Интегрирование рациональных функций
Рассмотрим интегралы от простейших дробей:
I.
II.
III.
IV.
где А, В, р, q, a - действительные числа.
На конкретных примерах покажем, как интегрируются простейшие дроби III и IV типов.
Пример 9. Найти интеграл .
Решение. В квадратном трехчлене, содержащемся в знаменателе подынтегральной функции, выделим полный квадрат:
Имеем
Использована формула 16 из таблицы интегралов.
Пример 10. Найти интеграл .
Решение. Выделим в числителе дроби такую линейную функцию, которая равнялась бы производной знаменателя:
Имеем
Заметим, что в первом из полученных интегралов . Введем новую переменную , получим табличный интеграл 3. Во втором интеграле в квадратном трехчлене выделим полный квадрат: , а интеграл сведем к табличному (формула 17). Тогда
При интегрировании рациональных дробей IV типа необходимо воспользоваться, так называемой, рекуррентной формулой:
;
Пример 11. Найти интеграл
Решение. Здесь После применения рекуррентной формулы получим
Если , то рекуррентной формулой нужно пользоваться несколько раз, пока интеграл не будет сведен к табличному.
Пример 12. Найти интеграл
Решение. Преобразуем подынтегральную функцию. Сначала в числителе выделим производную от квадратного трехчлена, стоящего в знаменателе, далее разобьем интеграл на сумму двух, один из которых легко свести к табличному, а другой найдем по рекуррентной формуле:
Имеем
Если под знаком интеграла стоит сложная рациональная функция, то с ней предварительно выполняют следующие преобразования:
1) если рациональная дробь неправильная, то сначала представляют ее в виде суммы целой части и правильной рациональной дроби
2) многочлен, стоящий в знаменателе рациональной функции, следует разложить на линейные и квадратичные множители в зависимости от того, каковы корни этого многочлена
,
где квадратный трехчлен не имеет действительных корней, а р и q - действительные числа;
3) правильную рациональную дробь (степень многочлена
Р(х) меньше степени многочлена Q(x)) раскладывают на простейшие дроби:
4) вычисляют неопределенные коэффициенты ,
В конечном итоге интегрирование рациональной функции сводится к отысканию интеграла от суммы многочлена и простейших рациональных дробей.
Любую правильную рациональную дробь можно представить в виде простейших дробей. Поясним это на примерах.
Пример 13. .
Дробь правильная, многочлен в знаменателе уже разложен на простые множители, корни действительные и различные. Каждому действительному некратному корню многочлена в знаменателе соответствует простейшая дробь I типа.
Пример 14. .
Дробь правильная, многочлен в знаменателе имеет один корень кратности 4.
Пример 15.
Дробь правильная, множители знаменателя неприводимые, т.к. многочлен 4-ой степени в знаменателе имеет две пары комплексно-сопряженных различных корней.
Пример 16.
Дробь правильная, многочлен в знаменателе имеет комплексные корни, является кратной парой комплексно-сопряженных корней.
Пример 17.
Данное представление правильной рациональной дроби вытекает из анализа примеров 13-16.
Коэффициенты А, В, С, D, … в разложении правильных рациональных дробей на простейшие дроби можно вычислить методом неопределенных коэффициентов. Суть его в следующем. Приводя дроби к общему знаменателю, получим равные многочлены в числителе справа и слева. Приравнивая коэффициенты при одинаковых степенях х, получим систему линейных уравнений для определения неизвестных коэффициентов.
Пример 18. Найти .
Решение. Подынтегральная функция не является правильной рациональной дробью.
Выполним преобразования:
Пример 19. Найти .
Решение. Под знаком интеграла стоит правильная рациональная дробь. Разложим ее на простейшие:
Сравним четвертую дробь и последнюю. Два многочлена считаются равными, если будут равны коэффициенты при одинаковых сте-
пенях х:
Складывая все три равенства, получим
или .
Из первого уравнения системы или
Из второго уравнения системы получим
или
Следовательно,
.
В результате получаем
Пример 20. Найти .
Решение. Под знаком интеграла стоит неправильная рациональная дробь. Представим ее в виде суммы целой части и правильной дроби. Предварительно поделим эту дробь «уголком»
х
Получим
Дроби с равными знаменателями будут равны, если равны и их числители.
Коэффициенты А, В, С, D найдем комбинированным методом: А и С - методом подстановки, а В и D - методом неопределенных коэффициентов.
Пусть , тогда или
; .
Пусть , тогда
или
; .
Преобразуем выражение
или
Приравнивая коэффициенты при одинаковых степенях х в последнем равенстве, получим систему линейных уравнений относительно неизвестных А, В, С и D.
Учитывая, что , воспользуемся только первым и вторым уравнениями системы линейных уравнений
или
Далее найдем исходный интеграл
Пример 21. Найти .
Решение. Под знаком интеграла стоит правильная рациональная дробь и можно было бы найти интеграл, представив эту дробь в виде суммы простейших дробей. Однако нахождение интеграла можно значительно упростить, если произвести замену переменной: .
Тогда