Статистические характеристики случайных величин

4.1. Математическое ожидание случайной величины X (обозначают M[X] или mx) – это среднее значение случайной величины, вычисленное по формулам:

Статистические характеристики случайных величин - student2.ru - для дискретных случайных величин;

Статистические характеристики случайных величин - student2.ru - для непрерывных случайных величин.

4.2. Центрированной случайной величиной ºX называют разность между самой случайной величиной X и ее математическим ожиданием M[X], т.е.

ºX = X - M[X].

4.3. Дисперсия случайной величины X (обозначается D[X] или dx) ― это есть математическое ожидание квадрата соответствующей ей центрированной случайной величины, т.е.

D[X]=M[ºX2],

которая вычисляется по формулам:

Статистические характеристики случайных величин - student2.ru - для дискретных случайных величин;

Статистические характеристики случайных величин - student2.ru - для непрерывных случайных величин.

Дисперсия характеризует среднее отклонение значений случайной величины от её математического ожидания. Размерность дисперсии не совпадает с размерностью характеризуемой случайной величины. Размерность дисперсии есть квадрат размерности соответствующей случайной величины.

4.4. Среднее квадратическое отклонение (σч) случайной величины X―это есть квадратный корень из ее дисперсии, т.е.

Статистические характеристики случайных величин - student2.ru .

Среднее квадратическое отклонение иногда называют стандартом. Среднее квадратическое отклонение имеет ту же размерность, что и сама случайная величина.

4.5. Начальным моментом порядка k (νk) случайной величины X называют математическое ожидание k-той степени этой случайной величины, т.е.

Статистические характеристики случайных величин - student2.ru .

4.6. Центральным моментом порядка k (μk) случайной величины X называют математическое ожидание k-той степени отклонения этой случайной величины от ее математического ожидания, т.е.

Статистические характеристики случайных величин - student2.ru

4.7. Эксцесс случайной величины (Е) – это есть величина, вычисленная по формуле:

Статистические характеристики случайных величин - student2.ru

Для нормального закона распределения Е=0, отличие эксцесса от нуля указывает на отклонение эмпирического закона распределения от нормального закона распределения.

4.8. Ассиметрия характеризует симметричность кривой распределения случайной величины X. Показатель ассиметрии (S) вычисляется по формуле:

Статистические характеристики случайных величин - student2.ru .

Для симметричных распределений S=0.

Наши рекомендации