Числовые промежутки.Окрестности точки

Вопрос 1.

Числовое множество

Множество-совокупность некоторых объектов,объедененных по какому-либо признаку. Элементы-объекты,из которых состоит множ-во.Обозн-ют загл.лат.буквами (А,В...Х,Y). Пустое множ-во-множ-во,не содержащее не одного элемента. Элементы множ-ва записывают в фигурных скобках,в которых они или перечислены или указано их общее св-во. Прим: A={1;2;3;4}-т.е.множ-во А состоит из эл-тов 1,2,3,4. А={x:0 x 1}. Множ-во А называется подмножеством множества В,если каждый эл-т множ-ва А является эл-том множ-ва В. А с В-А вкючено в В

В с А-В включает в себя А

Множ-во А и В равны или совпадают (А=В),если А с В и В с А,т.е они состоят из одних и тех же эл-тов.

Объединение или сумма множеств А и В-множ-во,состоящее из эл-тов,каждое из которых принадлежит хотя бы 1-му из множ-в.

А.. В(А+В) ; A.. B={x: x.. A или х.. В}

Пересечение(произведение)множ-в А и В-множ-ва,состоящие из эл-тов,каждый из которых принадлежит множ-ву А и В.

А.. В={x: x.. A b x.. B}

Числовое множ-во-множ-во,элементы которого-числа. Пример:

N={1:2...n...}-множ-во натур-ых чисел; Zo={0;1;2;...n...}-множ-во целых неотриц.чисел; Z={0;+1;+2;...+n...}-множ-во целых чисел;

Q={m/n: m...Z; n...N}-множ-во рациональных чисел; R-множ-во действ.чисел.Между этими множ-ми существует соответствие:

N...Zo...Z...Q...R

Рациональные числа-выражаются коннечной или бесконечной периодической десятичной дробью.(0,25 или 0,333).

Иррациональные числа-действительное число,не являющееся рациональным( П=3,1415926....).Ирр.числа выражаются бесконечной непериодической десят. дробью.

Комплексные числа.

Введение множ-ва компл.чисел связано с тем,что во множ-ве действ.чисел не выполняется извлечение корня чётной степени из отриц. числа. Комплексное число(z)- упорядоченная пара действительных чисел. Алгебраическая форма компл.числа:

z=x+iy

x-действительная часть; у-мнимая часть компл. числа.

Числовые промежутки.Окрестности точки - student2.ru Числовые промежутки.Окрестности точки - student2.ru Числовые промежутки.Окрестности точки - student2.ru i-множит ед.

При х=0: z=0+iy-чисто мнимое

у=0: z=x+i0=x-действ.число

2 компл.числа равны,если Z1=Z2

всякое комплексное число z=x+iy можно изобразить точкой М(х;y) в плоскости ОХУ

y Комплексное число можно изобразить радиус-вектором Числовые промежутки.Окрестности точки - student2.ru

M Числовые промежутки.Окрестности точки - student2.ru

Числовые промежутки.Окрестности точки - student2.ru Числовые промежутки.Окрестности точки - student2.ru Числовые промежутки.Окрестности точки - student2.ru Числовые промежутки.Окрестности точки - student2.ru Числовые промежутки.Окрестности точки - student2.ru .

Числовые промежутки.Окрестности точки - student2.ru x

о

Величина угла между положит.направл ОХ и вектором Числовые промежутки.Окрестности точки - student2.ru называется аргументом z(Arg z)

Arg z=arg z+2пк(к=0: Числовые промежутки.Окрестности точки - student2.ru )

Arg z-величина многогранника

Числовые промежутки.Окрестности точки - student2.ru arg z –гл.значение аргумента,когда z=0+i0,то

Z=P Числовые промежутки.Окрестности точки - student2.ru -тригометрическая форма комплексного числа

Числовые промежутки.Окрестности точки - student2.ru

Числовые промежутки.Окрестности точки - student2.ru

1) Числовые промежутки.Окрестности точки - student2.ru Числовые промежутки.Окрестности точки - student2.ru

Числовые промежутки.Окрестности точки - student2.ru

2) Числовые промежутки.Окрестности точки - student2.ru

Числовые промежутки.Окрестности точки - student2.ru

Числовые промежутки.Окрестности точки - student2.ru -ф-ла муавра

Для ее возведения комплексного числа в натур степень

Числовые промежутки.Окрестности точки - student2.ru

Вопрос 2.

Числовые промежутки.Окрестности точки.

Пусть а и в-действительные числа,причем а<в.Числовой промежуток(интервал)-подмножество всех действ. чисел,имеющие следующий вид:

[a; b]={x: a Числовые промежутки.Окрестности точки - student2.ru x Числовые промежутки.Окрестности точки - student2.ru b}-отрезок

(a;b]={x: a<x Числовые промежутки.Окрестности точки - student2.ru b}- пролуоткрый интервал

[a; b)={x: a Числовые промежутки.Окрестности точки - student2.ru x<b}- пролуткрытый интервал

(a; b)={x: a<x<b}- интервал

(- Числовые промежутки.Окрестности точки - student2.ru ;b]={x: - Числовые промежутки.Окрестности точки - student2.ru <x Числовые промежутки.Окрестности точки - student2.ru b}-бесконечный интервал

(- Числовые промежутки.Окрестности точки - student2.ru ;b)={x: - Числовые промежутки.Окрестности точки - student2.ru <x<b}- бесконечный интервал

(a;b)={x: a<x<b}- бесконечный интервал

(a;b]={x: a<x Числовые промежутки.Окрестности точки - student2.ru b}- бесконечный интервал

(- Числовые промежутки.Окрестности точки - student2.ru ; Числовые промежутки.Окрестности точки - student2.ru )={x: - Числовые промежутки.Окрестности точки - student2.ru <x< Числовые промежутки.Окрестности точки - student2.ru }- бесконечный интервал

a и в называют левыми и правыми краями интервала.Пусть Xo-действительное число(точка на числовой прямой).Окрестностью точки Хо называют любой интервал,содержащий эту точку.В частности интервал (Xо- Числовые промежутки.Окрестности точки - student2.ru ; Xo+ Числовые промежутки.Окрестности точки - student2.ru ) ( Числовые промежутки.Окрестности точки - student2.ru >o) называют

эпсилон-окрестностью точки Хо.

Число Хо-центр

-радиус

Пусть точка Хо X Числовые промежутки.Окрестности точки - student2.ru (Xо- Числовые промежутки.Окрестности точки - student2.ru ; Xo+ Числовые промежутки.Окрестности точки - student2.ru ) ,то выполняется нер-во Xо- Числовые промежутки.Окрестности точки - student2.ru <X< Xo+ Числовые промежутки.Окрестности точки - student2.ru => |X-Xo|< Числовые промежутки.Окрестности точки - student2.ru

- Числовые промежутки.Окрестности точки - student2.ru <X-Xo< Числовые промежутки.Окрестности точки - student2.ru

Выполнение последнего нер-ва означает поподание точки Х в эпсилон-окрестность точки Хо.

Вопрос 3.

Функция

Пусть даны 2 непустых нож-ва х и у,соответствие f,которое каждому эл-ту х...Х составляет только 1 элеиент у,называется

ф-цией и записывается у=f (x)

Чётная функция - это такая функция, что f(-x)=f(x) для любой точки из области определения. График чётной функции симметричен относительно оси Оу.

Нечётная фу́нкция — функция, меняющая знак при изменении знака независимой переменной.Нечётная фу́нкция симметрична относительно центра координат.

Возраст. Ф-ция:Функция y=f(x) возрастает на интервале X, если для любых и выполняется неравенство . Другими словами – большему значению аргумента соответствует большее значение функции.

Убыв. Ф-ция: Функция y=f(x) убывает на интервале X, если для любых и выполняется неравенство . Другими словами – большему значению аргумента соответствует меньшее значение функции.

Периоди́ческая фу́нкция ― функция, повторяющая свои значения через некоторый регулярный интервал аргумента, т.е не меняющая своего значения при добавлении к аргументу некоторого фиксированного ненулевого числа на всей области определения.

Обра́тная фу́нкция — функция, обращающая зависимость, выражаемую данной функцией. Например, если функция от x даёт y, то обратная ей функция от y даёт x. Обратная функция функции обычно обозначается

Вопрос 6.

Предел ф-ции в точке

Пусть ф-ция определена в некоторой окресности точки Хо кроме самой точки. Число а называется пределом ф-ции в точке Хо или при Х стремящемся к Хо ( Х Числовые промежутки.Окрестности точки - student2.ru Хо),если для любого положительного эпсилона найдется положителное число ,то для всех Х Хо и удовлетворяющих нер-ву |X-Xо|<0 выполняется нер-во | f(X)-A|<E

lim f(X)=A

Геометрический смысл предела ф-ции

Если для любой эпсилон-окрестности

точки А найдется такая окресность в

точке Хо,что для всех Х=Хо из этой

окресности соотв-щее зеачение

ф-ции f(X) лежит в эпсилон-окресности

точки А.

Величина зависит от выбора эпсилон.Поэтому:

Вопрос 7.

Односторонние пределы

В определении предела ф-ции Lim f(X)=A считается,что X стремится к Хо любым способом:

1)Оставаясь меньше Хо (слева от Хо)

2)Больше,чем Хо (справа от Хо)

3)Колеблясь вокруг точки Хо

Но бывают случаи,когда способ приближения Х к Хо влияет на значение предела ф-ции.По этому вводят односторонние пределы

Предел ф-ции слева обозначается lim f(x)=A

Предел ф-ции справа обозначается lim f(x)=A

Если существует предел,то существует оба односторонних предела,причем А1 =А2 =А. Верно и обратное утверждение: если существуют оба односторонних предела и они равны (А1 =А2 ),то сущ. И предел ф-ции,причём А1 =А2= А.

Если А1 = А2 ,то предел limf (X)- не существует.

Вопрос 8.

Наши рекомендации