Методы формирования выборочной совокупности.

Формирование выборки прежде всего основывается на знании контура выборки, под которым понимается список всех единиц совокупности, из которого выбираются единицы выборки. Контур выборки неизбежно содержит ошибку, называемую ошибкой контура выборки и характеризующую степень отклонения от истинных размеров совокупности. Исследователь должен информировать заказчика работы о размерах ошибки контура выборки. При формировании выборки исполь-зуются вероятностные (случайные) и невероятностные (неслучайные) методы. Если все единицы выборки имеют известный шанс (вероятность) быть включенными в выборку, то выборка называется вероятностной. Если эта вероятность неизвестна, то выборка называется невероятностной. Вероятностные методы включают в свой состав: простой случайный отбор, систематический отбор, кластерный отбор и стратифици-рованный отбор. Простой случайный отбор предполагает, что вероятность быть избранным в выборку известна и является одинаковой для всех единиц совокупности. Вероятность быть включенным в выборку определяется отношением объема выборки к размеру совокупности. Простой случайный отбор может осущест-вляться с помощью следующих методов: формирования выборки вслепую и с помощью таблицы случайных чисел. При использовании метода формирования выборки вслепую единицы совокупности в соответствии с их фамилиями, названиями или другими признаками вносятся в карточки, которые в перемешанном виде помещаются в какую-то непрозрачную емкость (ящик, коробку и т.п.). Из данной емкости кто-то случайным образом вытягивает число карточек, определяемое объемом выборки. В таблицах случайных чисел содержатся числа, порядок включения которых в таблицу осуществлен случайным образом. Единицам совокупности присваивают поряд-ковые номера. В таблице случайных чисел выбирают любую начальную точку и, двигаясь в произвольном направлении и произвольно меняя направление движения, выбирают необходимое количество номеров из числа присвоенных, равное заранее установленному объему выборки. Использование простого случайного отбора гарантирует, что каждая единица совокупности известна и имеет равные шансы быть включенной в выборку. Однако чтобы можно было эти методы использовать, необходимо предвари-тельно определить каждую единицу совокупности, что при больших размерах совокупности сделать достаточно сложно, а порой и невозможно. Данный недостаток существенно снижается при использовании компьютера для присвоения единицам совокупности номеров и формирования выборки. Начальная часть метода систематического отбора соответ-ствует начальной части метода простого случайного отбора: необходимо получить полный список единиц генеральной совокупности. Однако далее вместо присвоения порядковых номеров используется показатель «интервал скачка», рассчитанный как отношение размера совокупности к объему выборки. Очевидно, что данный метод является более экономичным и быстрым по сравнению с методом простого случайного отбора. Случайные числа используются только на начальной стадии его реализации. Вместе с тем такой метод дает менее репрезентативные результаты по сравнению с методом простого случайного отбора. Особенно широко метод систематического отбора используется, когда для различных видов совокупностей имеются различные справочники, списки, спецификации и т.п. материалы. Другим методом вероятностного отбора является кластерный отбор, основанный на делении совокупности на подгруппы, каждая из которых представляет совокупность в целом. Базовая концепция данного метода очень похожа на базовую концепцию метода систематического отбора, однако реализация этой концепции осуществляется по-другому. Предпо-ложим, что исследуется мнение населения какого-то региона относительно марки какого-то товара. Регион разбивается на четко определяемые части (кластеры), например области. Исследователь может считать, что выделенные кластеры являются идентичными и мнение населения этих областей характерно для региона в целом. Далее одна из областей (один кластер) выбирается случайным образом, определяется совокупность для этой области, в ней проводится соответствующее исследование, а выводы относятся к совокупности всего региона (одноступенчатый подход). В основе всех описанных методов лежит предположение, что любая совокупность характеризуется симметричным распределением ее ключевых характеристик. Говоря другими словами, каждая выборка достаточно полно характеризует всю совокупность, различные крайности в выборке уравновешивают друг друга. Но такая ситуация на практике встречается крайне редко. В случае несимметричного распределения совокупности последняя разделяется на различные подгруппы (страты), например, по уровню доходов, и выборки формируются из этих подгрупп, по сути дела являющихся сегментами рынка. Такой метод носит название стратифицированного отбора. Далее для каждой страты с помощью случайного отбора формируется выборка. При приме-нении невероятностных методов отбора формирование выборки осуществляется без использования понятий теории вероятностей, вследствие чего невозможно рассчитать вероятность включения в выборку единицы совокупности. Кратко охарактеризуем следующие невероятностные методы отбора: отбор на основе принципа удобства, отбор на основе суждений, формирование выборки в процессе обследования и формирование выборки на основе квот. Смысл метода отбора на основе принципа удобства заключается в том, что формирование выборки осущест-вляется самым удобным с позиций исследователя образом, например, с позиций минимальных затрат времени и усилий, с позиции доступности респондентов. Выбор места исследования и состава выборки производится субъективным образом, например, опрос покупателей осуществляется в магазине, ближайшем к месту жительства исследователя. Очевидно, что многие представители совокупности не принимают участия в опросе. Формирование выборки на основе суждения основано на использовании мнения квалифицированных специа-листов, экспертов относительно состава выборки. На основе такого подхода часто формируется состав фокус-группы. Формирование вы-борки в процессе опроса основано на расширении числа опрашиваемых исходя из предложений респондентов, которые уже приняли участие в обследовании. Первоначально иссле-дователь формирует выборку намного меньшую, чем требуется в проводимом исследовании, затем она по мере проведения обследования расширяется. Формирование выборки на основе квот (квотный отбор) предполагает предварительное, исходя из целей исследования, определение численности групп респондентов, отвечающих опреде-ленным требованиям (признакам). На практике имеет место одновременное использование нескольких методов формирования выборки.





Наши рекомендации