Совокупный риск — применение правила «или»
Очевидно, что вероятность случайно ответить правильно на три вопроса, при наличии пяти вариантов ответов на каждый из вопросов, будет значительно меньше, чем вероятность правильно угадать ответ на один вопрос. Ясно также, что вероятность правильно угадать ответ хотя бы на один вопрос из трех будет выше, чем вероятность правильно угадать ответ, когда вопрос всего один. До сих пор я специально подбирала простые примеры. Давайте выясним, как применять рассмотренные принципы в реальной жизненной обстановке.
В реальной жизни риск, как правило, связан с многократным попаданием в рискованную ситуацию. Рассмотрим вождение машины. Вероятность попасть в аварию при одной поездке на машине очень невелика. Но что будет с вероятностью аварии, если вы совершаете сотни или тысячи поездок? Согласно правилу «или», она будет равна вероятности аварии при первой, или при второй, или... при (319:) n-й поездке. Шекли (Shaklee, 1987) провела интересное исследование того, как люди понимают концепцию совокупного риска. Она предложила субъектам значения вероятностей, которые соответствовали риску наводнения в течение года. Затем субъектам надо было оценить вероятность наводнения в течение одного месяца, 5 лет, 10 лет и 15 лет. Только 74% субъектов понимали, что вероятность наводнения увеличивается, если рассматривать интервал времени более одного года. Среди тех, кто дал более высокие оценки вероятности наводнения за интервалы более одного года, большинство серьезно недооценивали совокупную вероятность.
Давайте рассмотрим аналогичный пример. При применении метода контрацепции, эффективного на 96% из расчета на год, в среднем у четырех женщин из каждых ста, пользующихся этим методом, в течение года наступит беременность. Предполагая, что уровень неудач не зависит от времени, следует ожидать, что при применении этого метода в течение 15 лет забеременеет больше женщин, а при его применении в течение более 15 лет количество беременностей будет еще больше (Shaklee, 1987). При опросе студентов колледжа оказалось, что только 52% студентов понимало, что количество ожидаемых беременностей возрастает со временем, а большинство из них существенно недооценивало число беременностей.
Вероятно, идея, которую я пытаюсь донести до читателя, уже ясна: при определении риска важно понимать, относится ли предлагаемое вам значение вероятности к какой-либо единице времени (например, год), и осознавать, что совокупный риск увеличивается при повторении рискованной ситуации. Создается впечатление непонимания многими того, что совокупные риски выше, чем однократные.
Ожидаемые значения
Какую из следующих двух ставок вы бы сделали, если было бы можно выбрать лишь одну из них?
1. Большая дюжина: игра стоит один доллар. Если, бросив пару игральных костей, вы получите 12 очков, вам вернут ваш доллар плюс еще 24 доллара. Если выпадет любая другая сумма, вы проиграли свой доллар.
2. Счастливая семерка, игра стоит один доллар (так же, как в предыдущем случае). Если, бросив пару игральных костей, вы получите в сумме 7 очков, вам вернут ваш доллар плюс еще б долларов. Если выпадет любая другая сумма, вы проиграли свой доллар.
Теперь выберите либо ставку номер 1, либо ставку номер 2.
Большинство людей выбирает ставку номер 1, считая, что 24 доллара, которые они выиграют, если выпадет 12 оков, в четыре раза больше, чем 6 долларов, которые можно выиграть, если выпадет 7 очков, а денежная величина одинакова для каждой ставки. Давайте проверим, насколько правильны такие рассуждения.
Чтобы выяснить, какая из ставок выгоднее, надо рассчитать вероятность выигрыша и проигрыша в каждом из случаев. Существует формула, которая учитывает все эти значения и дает ожидаемое значение (ОЗ) выигрыша для каждой игры. Ожидаемое значение — это количество денег, которое можно ожидать выиграть (320:) при каждой ставке, если вы все время будете продолжать играть. Формула для расчета ожидаемого значения (ОЗ) имеет следующий вид:
ОЗ = (вероятность выигрыша) х (величина выигрыша) + (вероятность проигрыша) х (величина проигрыша).
Давайте вычислим ОЗ для первой ставки. Начнем с расчета вероятности выпадения 12 при броске пары игральных костей. Существует только один способ получить 12: когда на каждой из костей выпадет 6. Вероятность этого события при условии, что кости «честные», равна 1/6 х 1/б = 1/36 = 0,028. (Поскольку нас интересует вероятность выпадения 6 и на первой, и на второй кости, мы используем правило «и» и перемножаем вероятности.) Таким образом, выпадение 12 ожидается в 2,8% случаев. Чему равна вероятность, что 12 не выпадет? Поскольку вы уверены, что 12 либо выпадет, либо не выпадет (других исходов быть не может), можно вычесть 0,028 из 1. Вероятность того, что выпадет не 12, равна 0,972. (Это значение с небольшой ошибкой округления можно получить также, если рассчитать вероятности 35 остальных возможных исходов — каждая из них равна 1/36 — и сложить их.) Все исходы, возможные при броске пары игральных костей, показаны на рис. 7.4.
ОЗ (1-я ставка) = (вероятность выпадения 12) х (выигрыш) + (вероятность выпадения не 12) х (проигрыш)
ОЗ (1-я ставка) = 0,028 х $24 + 0,972 х (- $1) 03 (1-я ставка) = $0,672 - $0,97 03 (1-я ставка) = - $0,30
Давайте посмотрим, из чего состоит эта формула. Если выпадет 12, вы выиграете $24, которые дают величину выигрыша. Если выпадет любое другое число, вы потеряете доллар, который заплатили, чтобы вступить в игру, поэтому величина проигрыша равна $1. Вероятность выигрыша умножается на величину выигрыша. Вероятность проигрыша умножается на величину проигрыша. Затем эти два произведения складываются. ОЗ при такой ставке равно $0,30. Это означает, что в конечном счете, если вы будете продолжать играть в эту игру много раз, вы можете ожидать, что будете проигрывать в среднем по $0,30 при каждой игре. Конечно, при каждой игре вы можете или проиграть $1, или выиграть $24, но после множества игр вы проиграете в среднем по $0,30 за одну игру. Если вы сыграете 1000 раз, ставя каждый раз по доллару, то вы потеряете $300.
Сравним этот результат со второй ставкой. Чтобы рассчитать ОЗ для второй ставки, мы начнем с вычисления вероятности выпадения 7 очков при броске пары костей. Сколько существует способов получить 7, бросив пару костей? Семь очков получится, если выпадет 1 на первой кости и 6 на второй, 2 и 5, 3 и 4, 4 и 3, 5 и 2 или 6 и 1. Таким образом, существует 6 возможных способов получить 7 очков из 36 возможных исходов. Вероятность любого из этих исходов равна 1/6x 1/6 = 1/36. (Это вероятность получить, например, 1 на первой кости и 6 на второй кости.) Для определения вероятности того, что за первым выпавшим числом последует второе нужное число, вы должны применить правило «и». Поскольку теперь вас интересует вероятность выпадения 1 и 6 , или 2 и 5, или 3 и 4, или 4 и 3, или 5 и 2, или 6 и 1, то (321:) следующим шагом должно быть применение правила «или». Поскольку существует 6 возможных комбинаций, вам надо сложить шесть раз по 1/6 (что, конечно, то же самое, что умножить 1/36 на 6). Таким образом, вероятность выпадения 7 очков при броске пары костей равна 6/36 (1/6 или 0,167). Вероятность выпадения любой другой суммы очков (не 7) равна 1 – 0,167 = 0,833. Теперь мы подсчитаем 03 для второй ставки:
ОЗ (2-я ставка) = (вероятность выпадения 7) х (выигрыш) + (вероятность выпадения не 7) х (проигрыш)
Рис. 7.4. Древовидная диаграмма, изображающая все исходы, возможные при броске пары игральных костей.
ОЗ (2-я ставка) = 0,167 х $6 + 0,833 х (- $1)
ОЗ (2-я ставка) = $1,002 - $0,833 = $0,169, или приблизительно $0,17.
Это означает, что если вы будете продолжать играть на условиях второй ставки, то вы выиграете в среднем по $0,17 за каждую игру. Следовательно, если вы сыграете 1000 раз, ставя каждый раз по $ 1, то можно ожидать, что вы разбогатеете на $170. Конечно, как и в первом случае, вы никогда не выиграете $0,17 за одну игру; это средний результат за много-много игр. Это то, что произойдет на большом интервале времени.
Даже если вы сначала думали иначе, лучше выбрать вторую ставку, поскольку вероятность выпадения семь очков относительно высока. Это объясняется тем, что существует шесть сочетаний, которые в сумме дают семь очков.
Существует игра, основанная на принципе, что чем больше имеется способов, которыми может произойти событие, тем выше его вероятность. Предположим, что в одной комнате собрались 40 человек, составляющих случайную выборку. Оцените вероятность того, что среди них окажутся два человека, у которых дни рождения совпадают. Возможно, вы удивитесь, узнав, что эта вероятность равна приблизительно 0,90. Вы понимаете, почему она такая высокая? Существует очень много способов совпадения дней рождения у сорока человек. Чтобы точно рассчитать эту вероятность, надо подсчитать количество всех возможных сочетаний из сорока человек по два. Таким образом, нам придется начать с сочетания первого человека со вторым, первого с третьим и т. д., пока не дойдем до первого с сороковым; затем начнем считать сочетания второго человека с третьим второго с четвертым и т.д., пока не дойдем до сочетания второго с сороковым. Этот процесс мы будем повторять до тех пор, пока каждый из сорока человек не побывает в паре с любым из остальных. Поскольку существует так много возможных пар людей, у которых могут совпадать дни рождения, то такое «совпадение» более вероятно, чем могло показаться сначала. Вероятность совпадения чьих-нибудь дней рождения превышает 0,50 для 23 человек и превышает 0,75 для 32 человек (Loftus & Loftus, 1982). Вы можете воспользоваться этими знаниями, чтобы держать пари на вечеринках или любых других собраниях людей. Лучше всего, если количество людей близко к 40. Большинству людей трудно поверить, что вероятность совпадения дней рождения настолько высока.
Вы можете также воспользоваться своими знаниями по теории вероятностей для того, чтобы повысить свои шансы на успех в некоторых ситуациях. Возьмем, к примеру, Аарона и Джилл, которые спорили из-за того, кому из них выносить мусор. Их мама согласилась помочь им уладить разногласия, назвав наугад число от одного до 10. Тот из них, чье число окажется ближе к числу, названному мамой, победит в споре. Аарон был первым и назвал число «три». Какое число должна назвать Джилл, чтобы иметь максимальные шансы на победу? Прекратите чтение и подумайте, какое число ей следует выбрать.
Джилл лучше всего выбрать число «четыре». Если мама назовет любое число, большее трех, то эта стратегия принесет Джилл победу. Таким образом, она может увеличить вероятность выигрыша в ситуации, которая кажется зависящей только от случая. (323:)
Субъективная вероятность
Обычно мы не имеем дела с известными или объективными вероятностями, такими как вероятность дождя в какой-либо день или вероятность возникновения болезней сердца при приеме противозачаточных таблеток. Тем не менее, мы ежедневно принимаем решения на основе собственных оценок вероятности различных событий. Субъективной вероятностью называют личные оценки вероятности событий. Такой термин введен для отличия наших оценок от объективной вероятности, под которой понимают суждение о вероятности события, рассчитанное математическим путем на основе известных данных о частоте его появления. Психологи, исследовавшие субъективные вероятности, обнаружили, что человеческие суждения о вероятностях часто бывают ошибочными, но, тем не менее мы руководствуемся ими при принятии решений во многих ситуациях.
Ошибка игрока
На ярмарках, в казино, в парках и в телевизионных шоу пользуется популярностью игра под названием «Колесо Фортуны». Имеется большое колесо, которое можно вращать. Колесо разделено на множество пронумерованных секторов, как колесо рулетки. Резиновый указатель показывает, какой номер выиграл.
Предположим, что ваша подруга Ванда решила подойти к «Колесу Фортуны» с научной точки зрения. Она села рядом с колесом и стала записывать все выигравшие номера. Допустим, что Ванда записала следующий набор чисел: 3, 6, 10, 19, 18, 4, 1, 7,7,5,20, 17,2, 14, 19, 13,8, 11, 13, 16, 12, 15, 19, 3, 8. После тщательного изучения этих чисел она заявила, что при последних 25 запусках колеса ни разу не выпадало число «девять»; она собирается поставить крупную сумму на «девять», так как теперь вероятность появления этого числа значительно возросла. Согласны ли вы с тем, что это надежная ставка? Если вы ответили «да», то совершили ошибку, которая очень часто встречается при изучении законов вероятности. «Колесо Фортуны» не обладает памятью и «не помнит», какие номера только что выиграли. Если колесо сконструировано таким образом, что выигрыш любого номера имеет одинаковую вероятность, то выпадение «девятки» равновероятно при каждом запуске колесе, независимо от того, часто или редко это число выпадало в прошлом. Люди верят, что случайные процессы, такие как вращение колеса, должны самокорректироваться таким образом, что если событие какое-то время не происходило, то вероятность его появления увеличивается. Такие неверные представления носят название ошибки игрока.
Ошибку игрока можно обнаружить во многих ситуациях. Рассмотрим пример из области спорта. Иногда считают, что если игроку в бейсболе долго не удается ударить, то повышается вероятность того, что к нему придет мяч, потому что ему «полагается» удар. Один мой друг, большой любитель спорта, рассказал мне следующую историю о Доне Саттоне, бывшем подающем игроке из команды «Доджерс». В один из сезонов Саттон проиграл очень много пробежек. Он предсказывал, что за этим «спадом» в игре последует «коррекция», и он закончит сезон с обычным для себя средним результатом. К сожалению, случайные факторы не подвергаются коррекции, и, начав сезон плохо, он закончил его с результатом ниже своего обычного среднего (324:) уровня. Часто люди продолжают совершать «ошибку игрока» даже после того, как им объяснили, в чем она заключается. Студенты рассказывали мне, что хотя на интеллектуальном уровне они могут понять, что совершают «ошибку игрока», на интуитивном уровне они «нутром» чувствуют, что «так и должно быть». Для понимания законов вероятностей нередко нужно отказаться от своих интуитивных предчувствий, поскольку они часто бывают неверными. Давайте рассмотрим другой пример.
У Уэйна и Марши четыре сына. Хотя они вообще-то не хотят иметь пятерых детей, обоим всегда хотелось иметь дочку. Следует ли им планировать завести еще одного ребенка, поскольку сейчас, при условии, что первые их четверо детей — все мальчики, рождение дочери более вероятно? Если вы поняли, в чем заключается «ошибка игрока», то вы признаете, что при пятой попытке, так же как и при каждой из первых четырех, рождение дочери так же вероятно, как и рождение сына. (На самом деле из-за того, что мальчиков рождается чуть больше, чем девочек, вероятность рождения мальчика несколько выше, чем вероятность рождения девочки.)
У «ошибки игрока» существует и оборотная сторона — некоторые убеждены, что события происходят полосами. Рассмотрите следующие два варианта.
А. Баскетболистка совершила 2 или 3 последних броска мимо кольца. Она собирается бросать снова. Б. Баскетболистка 2 или 3 раза подряд попала в кольцо. Она собирается бросать снова.
В каком случае вероятность попадания больше — в случае А или в случае Б?
Джилович (Gilovich, 1991) задавал подобные вопросы опытным баскетбольным болельщикам и обнаружил, что 91% из них верит, что вероятность попадания выше в случае Б по сравнению со случаем А. Другими словами, они верят, что игрокам везет «полосами». Чтобы выяснить, существуют ли данные, подтверждающие веру в «полосы», Джилович проанализировал статистические данные по играм филадельфийской баскетбольной команды. Вот что он выяснил:
• Если игрок только что попал в кольцо, 51 % следующих бросков был успешным.
• Если игрок только что промахнулся мимо кольца, 54% следующих бросков были успешными.
• Если игрок только что попал в кольцо два раза подряд, 50% следующих бросков были успешными.
• Если игрок только что промахнулся два раза подряд, 53% следующих бросков были успешными.
Эти данные не подтверждают того, что баскетболисты совершают броски «полосами». Тем не менее интервью с самими баскетболистами показало их веру в то, что успешные и неудачные броски идут «полосами». Очень трудно убедить людей в том, что случай — это просто случай; он не корректирует сам себя и не распределяет результаты «полосами».