Гемоглобин и его соединения

Основные функции крови

Кровь, циркулирующая в сосудах, выполняет перечисленные ниже функции.

Транспортная — перенос различных веществ: кислорода, уг­лекислого газа, питательных веществ, гормонов, медиаторов, электролитов, ферментов и др.

Дыхательная (разновидность транспортной функции) — пе­ренос кислорода от легких к тканям организма, углекислого га­за — от клеток к легким.

Трофическая (разновидность транспортной функции) — пе­ренос основных питательных веществ от органов пищеварения к тканям организма.

Экскреторная (разновидность транспортной функции) — транспорт конечных продуктов обмена веществ (мочевины, мочевой кислоты и др.), избытка воды, органических и минеральных веществ к органам их выделения (почки, потовые железы, легкие кишечник).

Терморегуляторная — перенос тепла от более нагретых орга­нов к менее нагретым.

Защитная — осуществление неспецифического и специфи­ческого иммунитета; свертывание крови предохраняет от кровопотери при травмах.

Регуляторная (гуморальная) — доставка гормонов, пептидов ионов и других физиологически активных веществ от мест их синтеза к клеткам организма, что позволяет осуществлять регуля­цию многих физиологических функций.

Гомеостатическая — поддержание постоянства внутренней среды организма (кислотно-основного равновесия, водно-элект­ролитного баланса и др.).

Объем и физико-химические свойства крови

Объем крови — общее количество крови в организме взросло­го человека составляет в среднем б — 8% от массы тела, что соот­ветствует 5—6 л. Повышение общего объема крови называют гиперволемией, уменьшение — гиповолемией.

Относительная плотность крови — 1.050 — 1.060 зависит в основном от количества эритроцитов. Относительная плотность плазмы крови — 1.025—1.034, определяется концентрацией бел­ков.

Вязкость крови — 5 усл.ед., плазмы — 1,7—2,2 усл.ед., если вязкость воды принять за 1. Обусловлена наличием в крови эрит­роцитов и в меньшей степени белков плазмы.

Осмотическое давление крови — сила, с которой раствори­тель переходит через полунепроницаемую мембрану из менее в более концентрированный раствор. Осмотическое давление кро­ви вычисляют криоскопическим методом путем определения точки замерзания крови (депрессии), которая для нее равна 0,56 — 0,58°С. Осмотическое давление крови в среднем составля­ет 7,6 атм. Оно обусловлено растворенными в ней осмотически активными веществами, главным образом неорганическими эле­ктролитами, в значительно меньшей степени — белками. Около 60% осмотического давления создается солями натрия (NaCI).

Осмотическое давление определяет распределение воды между тканями и клетками. Функции клеток организма могут осуществляться лишь при относительной стабильности осмотиче­ского давления. Если эритроциты поместить в солевой раствор, имеющий осмотическое давление, одинаковое с кровью, они не изменяют свой объем. Такой раствор называют изотоническим, или физиологическим.

Это может быть 0,85% раствор хлористого натрия. В растворе, осмотическое давление которого выше осмо­тического давления крови, эритроциты сморщиваются, так как вода выходит из них в раствор. В растворе с более низким осмоти­ческим давлением, чем давление крови, эритроциты набухают в результате перехода воды из раствора в клетку. Растворы с более высоким осмотическим давлением, чем давление крови, называ­ются гипертоническими, а имеющие более низкое давление — гипотоническими.

Онкотическое давление крови — часть осмотического давле­ния, создаваемого белками плазмы. Оно равно 0,03—0,04 атм, или 25—30 мм рт.ст. Онкотическое давление в основном обусловлено альбуминами. Вследствие малых размеров и высокой гидрофильности они обладают выраженной способностью притягивать к се­бе воду, за счет чего она удерживается в сосудистом русле. При снижении онкотического давления крови происходит выход воды из сосудов в интерстициальное пространство, что приводит к оте­ку тканей.

Кислотно-основное состояние крови (КОС). Активная реак­ция крови обусловлена соотношением водородных и гидроксильных ионов. Для определения активной реакции крови использу­ют водородный показатель рН — концентрацию водородных ио­нов, которая выражается отрицательным десятичным логариф­мом молярной концентрации ионов водорода. В норме рН — 7,36 (реакция слабоосновная); артериальной крови — 7,4; веноз­ной — 7,35. При различных физиологических состояниях рН крови может изменяться от 7,3 до 7,5. Активная реакция крови является жесткой константой, обеспечивающей ферментатив­ную деятельность. Крайние пределы рН крови, совместимые с жизнью, равны 7,0—7,8. Сдвиг реакции в кислую сторону назы­вается ацидозом, который обусловливается увеличением в крови водородных ионов. Сдвиг реакции крови в щелочную сторону называется алкалозом. Это связано с увеличением концентрации гидроксильных ионов ОН" и уменьшением концентрации водо­родных ионов.

В организме человека всегда имеются условия для сдвига ак­тивной реакции крови в сторону ацидоза или алкалоза, которые могут привести к изменению рН крови. В клетках тканей посто­янно образуются кислые продукты. Накоплению кислых соеди­нений способствует потребление белковой пищи. Напротив, при усиленном потреблении растительной пищи в кровь поступают основания. Поддержание постоянства рН крови является важной физиологической задачей и обеспечивается буферными система­ми крови. К буферным системам крови относятся гемоглобиновая, карбонатная, фосфатная и белковая.

Буферные системы нейтрализуют значительную часть по­ступающих в кровь кислот и щелочей, тем самым препятствуя сдвигу активной реакции крови. В организме в процессе метаболизма в большей степени образуется кислых продуктов. По­этому запасы щелочных веществ в крови во много раз превышают запасы кислых. Их рассматривают как щелочной резерв крови.

Гемоглобиновая буферная система на 75% обеспечивает бу­ферную емкость крови. Оксигемоглобин является более сильной кислотой, чем восстановленный гемоглобин. Оксигемоглобин обычно бывает в виде калиевой соли. В капиллярах тканей в кровь поступает большое количество кислых продуктов распада. Одно­временно в тканевых капиллярах при диссоциации оксигемоглобина происходит отдача кислорода и появление большого количе­ства щелочно реагирующих солей гемоглобина. Последние взаи­модействуют с кислыми продуктами распада, например угольной кислотой. В результате образуются бикарбонаты и восстановлен­ный гемоглобин. В легочных капиллярах гемоглобин, отдавая ио­ны водорода, присоединяет кислород и становится сильной кис­лотой, которая связывает ионы калия. Ионы водорода использу­ются для образования угольной кислоты, в дальнейшем выделяю­щейся из легких в виде Н2О и СО2.

Карбонатная буферная система по своей мощности занима­ет второе место. Она представлена угольной кислотой (H2CO2) и бикарбонатом натрия или калия (NaHCO2, КНСОз) в пропорции 1/20. Если в кровь поступает кислота, более сильная, чем уголь­ная, то в реакцию вступает, например, бикарбонат натрия. Обра­зуются нейтральная соль и слабодиссоциированная угольная кис­лота. Угольная кислота под действием карбоангидразы эритроци­тов распадается на Н2О и СО2 последний выделяется легкими в окружающую среду. Если в кровь поступает основание, то в реак­цию вступает угольная кислота, образуя гидрокарбонат натрия и воду. Избыток бикарбоната натрия удаляется через почки. Бикарбонатный буфер широко используется для коррекции нарушений кислотно-основного состояния организма.

Фосфатная буферная система состоит из натрия дигидрофосфата (NaH2PO4) и натрия гидрофосфата (Na2HPO4). Первое со­единение обладает свойствами слабой кислоты и взаимодейству­ет с поступившими в кровь щелочными продуктами. Второе со­единение имеет свойства слабой щелочи и вступает в реакцию с более сильными кислотами.

Белковая буферная система осуществляет роль нейтрализа­ции кислот и щелочей благодаря амфотерным свойствам: в кис­лой среде белки плазмы ведут себя как основания, в основной — как кислоты.

Буферные системы имеются и в тканях, что способствует поддержанию рН тканей на относительно постоянном уровне. Главными буферами тканей являются белки и фосфаты.

Поддержание рН осуществляется также с помощью легких и почек. Через легкие удаляется избыток углекислоты. Почки при ацидозе выделяют больше кислого одноосновного фосфата на­трия, а при алкалозе — больше щелочных солей: двухосновного фосфата натрия и бикарбоната натрия.

Состав крови

Кровь состоит из жидкой части плазмы и взвешенных в ней форменных элементов: эритроцитов, лейкоцитов и тромбоцитов. На долю форменных элементов приходится 40—45%, на долю плазмы — 55 — 60% от объема крови. Это соотношение получило название гематокритного соотношения, или гематокритного числа. Часто под гематокритным числом понимают только объем крови, приходящийся на долю форменных элементов.

Плазма крови

В состав плазмы крови входят вода (90 — 92%) и сухой остаток (8— 10%). Сухой остаток состоит из органических и неорганичес­ких веществ. К органическим веществам плазмы крови относятся белки, которые составляют 7—8%. Белки представлены альбуми­нами (4,5%), глобулинами (2—3,5%) и фибриногеном (0,2—0,4%).

Белки плазмы крови выполняют разнообразные функции:

1) коллоидно-осмотический и водный гомеостаз; 2) обеспечение агрегатного состояния крови; 3) кислотно-основной гомеостаз;

4) иммунный гомеостаз; 5) транспортная функция; 6) питательная функция; 7) участие в свертывании крови.

Альбумины составляют около 60% всех белков плазмы. Благо­даря относительно небольшой молекулярной массе (70000) и вы­сокой концентрации альбумины создают 80% онкотического дав­ления. Альбумины осуществляют питательную функцию, являют­ся резервом аминокислот для синтеза белков. Их транспортная функция заключается в переносе холестерина, жирных кислот, билирубина, солей желчных кислот, солей тяжелых металлов, ле­карственных препаратов (антибиотиков, сульфаниламидов). Аль­бумины синтезируются в печени.

Глобулины подразделяются на несколько фракций: а-, {3- и у-глобулины.

Α-глобулины включают гликопротеины, т.е. белки, простетической группой которых являются углеводы. Около 60% всей глю­козы плазмы циркулирует в составе гликопротеинов. Эта группа белков транспортирует гормоны, витамины, микроэлементы, липиды. К а-глобулинам относятся эритропоэтин, плазминоген, протромбин.

β-глобулины участвуют в транспорте фосфолипидов, холес­терина, стероидных гормонов, катионов металлов. К этой фракции относится белок трансферрин, обеспечивающий транспорт-железа, а также многие факторы свертывания крови.

γ-глобулины включают в себя различные антитела или иммуноглобулины 5 классов: Jg A, Jg G, Jg M, Jg D и Jg E, защищающие организм от вирусов и бактерий. К γ-глобулинам относятся также а и р — агглютинины крови, определяющие ее групповую при­надлежность.

Глобулины образуются в печени, костном мозге, селезенке лимфатических узлах.

Фибриноген — первый фактор свертывания крови. Под воз­действием тромбина переходит в нерастворимую форму — фиб­рин, обеспечивая образование сгустка крови. Фибриноген обра­зуется в печени.

Белки и липопротеиды способны связывать поступающие в кровь лекарственные вещества. В связанном состоянии лекарства неактивны и образуют как бы депо. При уменьшении концентра­ции лекарственного препарата в сыворотке он отщепляется от белков и становится активным. Это надо иметь в виду, когда на фоне введения одних лекарственных веществ назначаются дру­гие фармакологические средства. Введенные новые лекарствен­ные вещества могут вытеснить из связанного состояния с белка­ми ранее принятые лекарства, что приведет к повышению кон­центрации их активной формы.

К органическим веществам плазмы крови относятся также небелковые азотсодержащие соединения (аминокислоты, поли-пептиды, мочевина, мочевая кислота, креатинин, аммиак). Общее количество небелкового азота в плазме, так называемого оста­точного азота, составляет 11—15 ммоль/л (30—40 мг%). Содер­жание остаточного азота в крови резко возрастает при наруше­нии функции почек.

В плазме крови содержатся также безазотистые органичес­кие вещества: глюкоза 4,4—6,6 ммоль/л (80— 120 мг%), нейтраль­ные жиры, липиды, ферменты, расщепляющие гликоген, жиры и белки, проферменты и ферменты, участвующие в процессах свертывания крови и фибринолиза.

Неорганические вещества плазмы крови составляют 0,9— 1%. К этим веществам относятся в основном катионы Na+, Са2+, К+, Мg2+ и анионы С1-, НРО42-, НСО3-. Содержание катионов являет­ся более жесткой величиной, чем содержание анионов. Ионы обеспечивают нормальную функцию всех клеток организма, в том числе клеток возбудимых тканей, обусловливают осмотичес­кое давление, регулируют рН.

В плазме постоянно присутствуют все витамины, микроэле­менты, промежуточные продукты метаболизма (молочная и пировиноградная кислоты).

Форменные элементы крови

К форменным элементам крови относятся эритроциты, лейкоциты и тромбоциты.

Эритроциты

В норме в крови у мужчин содержится 4,0—5,0х1012/л, или 4000 000-5 000 000 эритроцитов в 1 мкл, у женщин - 4,5xl012/л, или 4 500 000 в 1 мкл. Повышение количества эритроцитов в кро­ви называется эритроцитозом, уменьшение эритропенией, что часто сопутствует малокровию, или анемии. При анемии может быть снижено или число эритроцитов, или содержание в них ге­моглобина, или и то и другое. Как эритроцитозы, так и эритропении бывают ложными в случаях сгущения или разжижения кро­ви и истинными.

Эритроциты человека лишены ядра и состоят из стромы, за­полненной гемоглобином, и белковолипидной оболочки. Эритро­циты имеют преимущественно форму двояковогнутого диска ди­аметром 7,5 мкм, толщиной на периферии 2,5 мкм, в центре — 1,5мкм. Эритроциты такой формы называются нормоцитами. Особая форма эритроцитов приводит к увеличению диффузион­ной поверхности, что способствует лучшему выполнению основ­ной функции эритроцитов — дыхательной. Специфическая фор­ма обеспечивает также прохождение эритроцитов через узкие капилляры. Лишение ядра не требует больших затрат кислорода на собственные нужды и позволяет более полноценно снабжать организм кислородом.

Эритроциты выполняют в организме следующие функции:

1) основной функцией является дыхательная — перенос кис­лорода от альвеол легких к тканям и углекислого газа от тканей к легким;

2) регуляция рН крови благодаря одной из мощнейших бу­ферных систем крови — гемоглобиновой;

3) питательная — перенос на своей поверхности аминокислот от органов пищеварения к клеткам организма;

4) защитная — адсорбция на своей поверхности токсических веществ;

5) участие в процессе свертывания крови за счет содержания факторов свертывающей и противосвертывающей систем крови;

6) эритроциты являются носителями разнообразных фермен­тов (холинэстераза, угольная ангидраза, фосфатаза) и витаминов (В1, В2, B3, аскорбиновая кислота);

7) эритроциты несут в себе групповые признаки крови.

Гемоглобин и его соединения

Гемоглобин — особый белок хромопротеида, благодаря кото­рому эритроциты выполняют дыхательную функцию и поддерживают рН крови. У мужчин в крови содержится в среднем 130—160 г/л гемоглобина, у женщин — 120—150 г/л.

Гемоглобин состоит из белка глобина и 4 молекул гема. Гем имеет в своем составе атом железа, способный присоединять или отдавать молекулу кислорода. При этом валентность железа, к которому присоединяется кислород, не изменяется, т.е. железо остается двухвалентным. Гемоглобин, присоединивший к себе кислород, превращается в оксигемоглобин. Это соединение не­прочное. В виде оксигемоглобина переносится большая часть кислорода. Гемоглобин, отдавший кислород, называется восста­новленным, или дезоксигемоглобином. Гемоглобин, соединенный с углекислым газом, носит название карбгемоглобина. Это соеди­нение также легко распадается. В виде карбгемоглобина перено­сится 20% углекислого газа.

В особых условиях гемоглобин может вступать в соединение и с другими газами. Соединение гемоглобина с угарным газом (СО) называется карбоксигемоглобином. Карбоксигемоглобин яв­ляется прочным соединением. Гемоглобин блокирован в нем угарным газом и неспособен осуществлять перенос кислорода. Сродство гемоглобина к угарному газу выше его сродства к кис­лороду, поэтому даже небольшое количество угарного газа в воз­духе является опасным для жизни.

При некоторых патологических состояниях, например, при отравлении сильными окислителями (бертолетовой солью, перманганатом калия и др.) образуется прочное соединение гемогло­бина с кислородом — метгемоглобин, в котором происходит окисление железа, и оно становится трехвалентным. В результате этого гемоглобин теряет способность отдавать кислород тканям, что может привести к гибели человека.

В скелетных и сердечной мышцах находится мышечный гемо­глобин, называемый миоглобином. Он играет важную роль в снаб­жении кислородом работающих мышц.

Имеется несколько форм гемоглобина, отличающихся строе­нием белковой части — глобина. У плода содержится гемогло­бин F. В эритроцитах взрослого человека преобладает гемоглобин А (90%). Различия в строении белковой части определяют сродст­во гемоглобина к кислороду. У фетального гемоглобина оно на­много больше, чем у гемоглобина А. Это помогает плоду не испы­тывать гипоксии при относительно низком парциальном напря­жении кислорода в его крови.

Ряд заболеваний связан с появлением в крови патологичес­ких форм гемоглобина. Наиболее известной наследственной па­тологией гемоглобина является серповидноклеточная анемия. Форма эритроцитов напоминает серп. Отсутствие или замена не­скольких аминокислот в молекуле глобина при этом заболевании приводит к существенному нарушению функции гемоглобина.

В клинических условиях принято вычислять степень насыще­ния эритроцитов гемоглобином. Это так называемый цветовой показатель. В норме он равен 1. Такие эритроциты называются иормохромными. При цветовом показателе более 1,1 эритроциты гиперхромные, менее 0,85 — гипохромные. Цветовой показатель важен для диагностики анемий различной этиологии.

.Гемолиз

Процесс разрушения оболочки эритроцитов и выход гемогло­бина в плазму крови называется гемолизом. При этом плазма ок­рашивается в красный цвет и становится прозрачной — «лаковая кровь». Различают несколько видов гемолиза.

Осмотический гемолиз может возникнуть в гипотонической среде. Концентрация раствора NaCI, при которой начинается гемолиз, носит название осмотической резистентности эритроци­тов. Для здоровых людей границы минимальной и максимальной стойкости эритроцитов находятся в пределах от 0,4 до 0,34%.

Химический гемолиз может быть вызван хлороформом, эфи­ром, разрушающими белково-липидную оболочку эритроцитов.

Биологический гемолиз встречается при действии ядов змей, насекомых, микроорганизмов, при переливании несовместимой крови под влиянием иммунных гемолизинов.

Температурный гемолиз возникает при замораживании и размораживании крови в результате разрушения оболочки эрит­роцитов кристалликами льда.

Механический гемолиз происходит при сильных механических воздействиях на кровь, например встряхивании ампулы с кровью.

Скорость оседания эритроцитов (СОЭ) Скорость оседания эритроцитов у здоровых мужчин состав­ляет 2—10 мм в час, у женщин — 2 — 15 мм в час. СОЭ зависит от многих факторов: количества, объема, формы и величины заряда эритроцитов, их способности к агрегации, белкового состава плазмы. В большей степени СОЭ зависит от свойств плазмы, чем эритроцитов. СОЭ увеличивается при беременности, стрессе, воспалительных, инфекционных и онкологических заболевани­ях, при уменьшении числа эритроцитов, при увеличении содер­жания фибриногена. СОЭ снижается при увеличении количества альбуминов. Многие стероидные гормоны (эстрогены, глюкокор-тикоиды), а также лекарственные вещества (салицилаты) вызыва­ют повышение СОЭ.

Эритропоэз

Образование эритроцитов, или эритропоэз, происходит в красном костном мозге. Эритроциты вместе с кроветворной тка­нью носят название «красного ростка крови», или эритрона.

Для образования эритроцитов требуются железо и ряд вита­минов.

Железо организм получает из гемоглобина разрушающихся эритроцитов и с пищей. Трехвалентное железо пищи с помощью вещества, находящегося в слизистой кишечника, превращается в двухвалентное железо. С помощью белка трансферрина железо всосавшись, транспортируется плазмой в костный мозг, где оно включается в молекулу гемоглобина. Избыток железа депониру­ется в печени в виде соединения с белком — ферритина или с бел­ком и липоидом — гемосидерина. При недостатке железа разви­вается железодефицитная анемия.

Для образования эритроцитов требуются витамин В12(циано-кобаламин) и фолиевая кислота. Витамин В12 поступает в орга­низм с пищей и называется внешним фактором кроветворения. Для его всасывания необходимо вещество (гастромукопротеид), которое вырабатывается железами слизистой оболочки пилорического отдела желудка и носит название внутреннего фактора кроветворения Касла. При недостатке витамина В12 развивается В12-дефицитная анемия. Это может быть или при недостаточном его поступлении с пищей (печень, мясо, яйца, дрожжи, отруби), или при отсутствии внутреннего фактора (резекция нижней тре­ти желудка). Считается, что витамин В12 способствует синтезу глобина. Витамин В12 и фолиевая кислота участвуют в синтезе ДНК в ядерных формах эритроцитов. Витамин В12 (рибофлавин) необходим для образования липидной стромы эритроцитов. Ви­тамин В2 (пиридоксин) участвует в образовании гема. Витамин С стимулирует всасывание железа из кишечника, усиливает дейст­вие фолиевой кислоты. Витамин Е (а-токоферол) и витамин РР (пантотеновая кислота) укрепляют липидную оболочку эритроци­тов, защищая их от гемолиза.

Для нормального эритропоэза необходимы микроэлементы. Медь помогает всасыванию железа в кишечнике и способствует включению железа в структуру гема. Никель и кобальт участвуют в синтезе гемоглобина и гемсодержащих молекул, утилизирую­щих железо. В организме 75% цинка находится в эритроцитах в составе фермента карбоангидразы. Недостаток цинка вызывает лейкопению. Селен, взаимодействуя с витамином Е, защищает мембрану эритроцита от повреждения свободными радикалами.

Физиологическими регуляторами эритропоэза являются эри-тропоэтины, образующиеся главным образом в почках, а также в печени, селезенке и в небольших количествах постоянно при­сутствующие в плазме крови здоровых людей. Эритропоэтины усиливают пролиферацию клеток-предшественников эритроидного ряда — КОЕ-Э (колониеобразующая единица эритроцитар-ная) и ускоряют синтез гемоглобина. Они стимулируют синтез информационной РНК, необходимой для образования энзимов,

пторые участвуют в формировании гема и глобина. Эритропоэ­тины увеличивают также кровоток в сосудах кроветворной ткани

увеличивают выход в кровь ретикулоцитов. Продукция эритро-поэтинов стимулируется при гипоксии различного происхожде­ния: пребывание человека в горах, кровопотеря, анемия, заболе­вания сердца и легких. Эритропоэз активируется мужскими по­ловыми гормонами, что обусловливает большее содержание эри­троцитов в крови у мужчин, чем у женщин. Стимуляторами эрит­ропоэза являются соматотропный гормон, тироксин, катехоламины, интерлейкины. Торможение эритропоэза вызывают особые вещества — ингибиторы эритропоэза, образующиеся при увели­чении массы циркулирующих эритроцитов, например у спустив­шихся с гор людей. Тормозят эритропоэз женские половые гор­моны (эстрогены), кейлоны. Симпатическая нервная система ак­тивирует эритропоэз, парасимпатическая — тормозит. Нервные и эндокринные влияния на эритропоэз осуществляются, по-види­мому, через эритропоэтины.

Об интенсивности эритропоэза судят по числу ретикулоци­тов — предшественников эритроцитов. В норме их количество составляет 1 — 2%. Созревшие эритроциты циркулируют в крови в течение 100—120 дней.

Разрушение эритроцитов происходит в печени, селезенке, в костном мозге посредством клеток мононуклеарной фагоцитар­ной системы. Продукты распада эритроцитов также являются стимуляторами кроветворения.

Лейкоциты

Лейкоциты, или белые кровяные тельца, представляют собой бесцветные клетки, содержащие ядро и протоплазму, размером от 8 до 20 мкм.

Количество лейкоцитов в периферической крови взрослого человека колеблется в пределах 4,0—9,0х109 /л, или 4000—9000 в 1 мкл. Увеличение количества лейкоцитов в крови называется лейкоцитозом, уменьшение — лейкопенией. Лейкоцитозы могут быть физиологическими и патологическими (реактивными). Сре­ди физиологических лейкоцитозов различают пищевой, миогенный, эмоциональный, а также лейкоцитоз, возникающий при бе­ременности. Физиологические лейкоцитозы носят перераспреде­лительный характер и, как правило, не достигают высоких пока­зателей. При патологических лейкоцитозах происходит выброс клеток из органов кроветворения с преобладанием молодых форм. В наиболее тяжелой форме лейкоцитоз наблюдается при лейкозах. Лейкоциты, образующиеся при этом заболевании в из­быточном количестве, как правило, малодифференцированы и не способны выполнять свои физиологические функции, в частности, защищать организм от патогенных бактерий. Лейкопения наблюдается при повышении радиоактивного фона, при примене­нии некоторых фармакологических препаратов. Особенно выра­женной она бывает в результате поражения костного мозга при лучевой болезни. Лейкопения встречается также при некоторых тяжелых инфекционных заболеваниях (сепсис, милиарный ту­беркулез). При лейкопениях происходит резкое угнетение за­щитных сил организма в борьбе с бактериальной инфекцией.

Лейкоциты в зависимости от того, однородна ли их прото­плазма или содержит зернистость, делят на 2 группы: зернистые, или гранулоциты, и незернистые, или агранулоциты. Гранулоциты в зависимости от гистологических красок, какими они окра­шиваются, бывают трех видов: базофилы (окрашиваются основ­ными красками), эозинофилы (кислыми красками) и нейтрофилы (и основными, и кислыми красками). Нейтрофилы по степени зрелости делятся на метамиелоциты (юные), палочкоядерные и сегментоядерные. Агранулоциты бывают двух видов: лимфоциты и моноциты.

В клинике имеет значение не только общее количество лейко­цитов, но и процентное соотношение всех видов лейкоцитов, по­лучившее название лейкоцитарной формулы, или лейкограммы.

Лейкоцитарная формула здорового человека (в %)

Гранулоциты Агранулоциты
Нейтрофилы Базофилы Эозинофилы Лимфоциты Моно­циты
юные палочкоядер­ные сегментоядерные
0-1 1-5 45-65 0-1 1-5 25-40 2-8

При ряде заболеваний характер лейкоцитарной формулы ме­няется. Увеличение количества юных и палочкоядерных нейтрофилов называется сдвигом лейкоцитарной формулы влево. Он свидетельствует об обновлении крови и наблюдается при острых инфекционных и воспалительных заболеваниях, а также при лей­козах.

Все виды лейкоцитов выполняют в организме защитную функцию. Однако осуществление ее различными видами лейко­цитов происходит по-разному.

Нейтрофилы являются самой многочисленной группой. Ос­новная их функция — фагоцитоз бактерий и продуктов распада тканей с последующим перевариванием их при помощи лизосомных ферментов (протеазы, пептидазы, оксидазы, дезоксирибонуклеазы). Нейтрофилы первыми приходят в очаг повреждения. Так как они являются сравнительно небольшими клетками, то их называют микрофагами. Нейтрофилы оказывают цитотоксическое действие, а также продуцируют интерферон, обладающий противовирусным действием. Активированные нейтрофилы вы­деляют арахидоновую кислоту, которая является предшественни­ком лейкотриенов, тромбоксанов и простагландинов. Эти вещест­ва играют важную роль в регуляции просвета и проницаемости кровеносных сосудов и в запуске таких процессов, как воспале­ние, боль и свертывание крови. По нейтрофилам можно опреде­лить пол человека, так как у женского генотипа имеются круглые выросты — «барабанные палочки».

Эозинофилы также обладают способностью к фагоцитозу, но это не имеет серьезного значения из-за их небольшого количест­ва в крови. Основной функцией эозинофилов является обезвре­живание и разрушение токсинов белкового происхождения, чу­жеродных белков, а также комплекса антиген-антитело. Эозино­филы продуцируют фермент гистаминазу, который разрушает гистамин, освобождающийся из поврежденных базофилов и туч­ных клеток при различных аллергических состояниях, глистных инвазиях, аутоиммунных заболеваниях. Эозинофилы осуществ­ляют противоглистный иммунитет, оказывая на личинку цитотоксическое действие. Поэтому при этих заболеваниях увеличивает­ся количество эозинофилов в крови (эозинофилия). Эозинофилы продуцируют плазминоген, который является предшественником плазмина — главного фактора фибринолитической системы кро­ви. Содержание эозинофилов в периферической крови подвер­жено суточным колебаниям, что связано с уровнем глюкокортикоидов. В конце второй половины дня и рано утром их на 20% меньше среднесуточного уровня, а в полночь — на 30% больше.

Базофилы продуцируют и содержат биологически активные вещества (гепарин, гистамин и др.), чем и обусловлена их функ­ция в организме. Гепарин препятствует свертыванию крови в очаге воспаления. Гистамин расширяет капилляры, что способст­вует рассасыванию и заживлению. В базофилах содержатся так­же гиалуроновая кислота, влияющая на проницаемость сосудис­той стенки; фактор активации тромбоцитов (ФАТ); тромбоксаны, способствующие агрегации тромбоцитов; лейкотриены и про-стагландины. При аллергических реакциях (крапивница, бронхи­альная астма, лекарственная болезнь) под влиянием комплекса антиген-антитело происходит дегрануляция базофилов и выход в кровь биологически активных веществ, в том числе гистамина, что определяет клиническую картину заболеваний.

Моноциты обладают выраженной фагоцитарной функцией. Это самые крупные клетки периферической крови и их называют Макрофагами. Моноциты находятся в крови 2-3 дня, затем они вы­едят в окружающие ткани, где, достигнув зрелости, превраща­ется в тканевые макрофаги (гистиоциты). Моноциты способны фагоцитировать микробы в кислой среде, когда нейтрофилы не активны. Фагоцитируя микробы, погибшие лейкоциты, повреж­денные клетки тканей, моноциты очищают место воспаления и подготавливают его для регенерации. Моноциты синтезируют от­дельные компоненты системы комплемента. Активированные мо­ноциты и тканевые макрофаги продуцируют цитотоксины, интерлейкин (ИЛ-1), фактор некроза опухолей (ФНО), интерферон, тем самым осуществляя противоопухолевый, противовирусный, противомикробный и противопаразитарный иммунитет; участву­ют в регуляции гемопоэза. Макрофаги принимают участие в фор­мировании специфического иммунного ответа организма. Они распознают антиген и переводят его в так называемую иммуно-генную форму (презентация антигена). Моноциты продуцируют как факторы, усиливающие свертывание крови (тромбоксаны, тромбопластины), так и факторы, стимулирующие фибринолиз (активаторы плазминогена).

Лимфоциты являются центральным звеном иммунной систе­мы организма. Они осуществляют формирование специфическо­го иммунитета, синтез защитных антител, лизис чужеродных кле­ток, реакцию отторжения трансплантата, обеспечивают иммун­ную память. Лимфоциты образуются в костном мозге, а дифференцировку проходят в тканях. Лимфоциты, созревание которых происходит в вилочковой железе, называются Т-лимфоцитами (тимусзависимые). Различают несколько форм Т-лимфоцитов. Т—киллеры (убийцы) осуществляют реакции клеточного иммуни­тета, лизируя чужеродные клетки, возбудителей инфекционных заболеваний, опухолевые клетки, клетки-мутанты. Т-хелперы (по­мощники), взаимодействуя с В-лимфоцитами, превращают их в плазматические клетки, т.е. помогают течению гуморального им­мунитета. Т-супрессоры (угнетатели) блокируют чрезмерные ре­акции В-лимфоцитов. Имеются также Т-хелперы и Т-супрессоры, регулирующие клеточный иммунитет. Т-клетки памяти хранят информацию о ранее действующих антигенах.

В-лимфоциты (бурсозависимые) проходят дифференцировку у человека в лимфоидной ткани кишечника, нёбных и глоточных миндалин. В-лимфоциты осуществляют реакции гуморального иммунитета. Большинство В-лимфоцитов являются антителопродуцентами. В-лимфоциты в ответ на действие антигенов в резуль­тате сложных взаимодействий с Т-лимфоцитами и моноцитами превращаются в плазматические клетки. Плазматические клетки вырабатывают антитела, которые распознают и специфически связывают соответствующие антигены. Различают 5 основных классов антител, или иммуноглобулинов: IgA, IgG, IgM, IgE, IgD. Среди В-лимфоцитов также выделяют клетки-киллеры, хелперы, супрессоры и клетки иммунологической памяти.

0-лимфоциты (нулевые) не проходят дифференцировку и яв­ляются как бы резервом Т- и В-лимфоцитов.

Лейкопоэз

Все лейкоциты образуются в красном костном мозге из еди­ной стволовой клетки. Предшественники лимфоцитов первыми ответвляются от общего древа стволовых клеток; формирование лимфоцитов происходит во вторичных лимфатических органах.

Лейкопоэз стимулируется специфическими ростовыми фак­торами, которые воздействуют на определенные предшественни­ки гранулоцитарного и моноцитарного рядов. Продукция гранулоцитов стимулируется гранулоцитарным колониестимулирующим фактором (КСФ-Г), образующимся в моноцитах, макрофа­гах, Т-лимфоцитах, а угнетается — кейлонами и лактоферрином, секретируемыми зрелыми нейтрофилами; простагландинами Е. Моноцитопоэз стимулируется моноцитарным колониестимулирующим фактором (КСФ-М), катехоламинами. Простагландины Е, а- и В-интерфероны, лактоферрин тормозят продукцию моно­цитов. Большие дозы гидрокортизона препятствуют выходу мо­ноцитов из костного мозга. Важная роль в регуляции лейкопоэза принадлежит интерлейкинам. Одни из них усиливают рост и раз­витие базофилов (ИЛ-3) и эозинофилов (ИЛ-5), другие стимули­руют рост и дифференцировку Т- и В-лимфоцитов (ИЛ-2,4,6,7). Лейкопоэз стимулируют продукты распада самих лейкоцитов и тканей, микроорганизмы и их токсины, некоторые гормоны гипо­физа, нуклеиновые кислоты.

Жизненный цикл разных видов лейкоцитов различен. Одни живут часы, дни, недели, другие на протяжении всей жизни чело­века.

Лейкоциты разрушаются в слизистой оболочке пищевари­тельного тракта, а также в ретикулярной ткани.

Тромбоциты

Тромбоциты, или кровяные пластинки — плоские клетки не­правильной округлой формы диаметром 2—5 мкм. Тромбоциты человека не имеют ядер. Количество тромбоцитов в крови челове­ка составляет 180-320x109/л, или 180 000-320 000 в 1 мкл. Имеют место суточные колебания: днем тромбоцитов больше, чем ночью. Увеличение содержания тромбоцитов в периферической крови называется тромбоцитозом, уменьшение — тромбоцитопенией.

Главной функцией тромбоцитов является участие в гемостазе. Тромбоциты способны прилипать к чужеродной поверхности (адгезия), а также склеиваться между собой (агрегация) под влия­нием разнообразных причин. Тромбоциты продуцируют и выде­ляют ряд биологически активных веществ: серотонин, адреналин, норадреналин, а также вещества, получившие название пластин­чатых факторов свертывания крови. Тромбоциты способны выде­лять из клеточных мембран арахидоновую кислоту и превращать ее в тромбоксаны, которые, в свою очередь, повышают агрегационную активность тромбоцитов. Эти реакции происходят под действием фермента циклооксигеназы. Тромбоциты способны к передвижению за счет образования псевдоподий и фагоцитозу инородных тел, вирусов, иммунных комплексов, тем самым, вы­полняя защитную функцию. Тромбоциты содержат большое ко­личество серотонина и гистамина, которые влияют на величину просвета и проницаемость капилляров, определяя тем самым со­стояние гистогематических барьеров.

Тромбоциты образуются в красном костном мозге из гигант­ских клеток мегакариоцитов. Продукция тромбоцитов регулиру­ется тромбоцитопоэтинами. Тромбоцитопоэтины образуются в костном мозге, селезенке, печени. Различают тромбоцитопоэтины кратковременного и длительного действия. Первые усилива­ют отщепление тромбоцитов от мегакариоцитов и ускоряют их поступление в кровь. Вторые способствуют дифференцировке и созреванию мегакариоцитов. Активность тромбоцитопоэтинов регулируется интерлейкинами (ИЛ-6 и ИЛ-11). Количество тром­боцитопоэтинов повышается при воспалении, необратимой агре­гации тромбоцитов. Продолжительность жизни тромбоцитов со­ставляет от 5 до 11 дней. Разрушаются кровяные пластинки в клетках системы макрофагов.

Система гемостаза

Кровь циркулирует в кровеносном русле в жидком состоя­нии. При травме, когда нарушается целостность кровеносных со­судов, кровь должна свертываться. За все это в организме чело­века отвечает система PACK — регуляции агрегатного состояния крови. Эта регуляция осуществляется сложнейшими механизма­ми, в которых принимают участие факторы свертывающей, противосвертывающей и фибринолитической систем крови. В здо­ровом организме эти системы взаимосвязаны. Изменение функ­ционального состояния одной из систем сопровождается компенсаторными сдвигами в деятельности другой. Нарушение функциональных взаимосвязей может привести к тяжелым па­тологическим состояниям организма, заключающимся или в по­вышенной кровоточивости, или во внутрисосудистом тромбообразовании.

К факторам, поддерживающим кровь в жидком состоянии, относятся следующие: 1) внутренние стенки сосудов и формен­ные элементы крови заряжены отрицательно; 2) эндотелий сосу­дов секретирует простациклин ПГИ-2 — ингибитор агрегации тромбоцитов, антитромбин III, активаторы фибринолиза; 3) фак­торы свертывающей системы крови находятся в сосудистом рус­ле в неактивном состоянии; 4) наличие антикоагулянтов; 5) боль­шая скорость кровотока.

Свертывающие механизмы

Свертывание крови (гемокоагуляция) — это жизненно важная защитная реакция, направленная на сохранение крови в сосу­дистой системе и предотвращающая гибель организма от кровопотери при травме сосудов.

Основные положения ферментативной теории свертывания крови были разработаны А. Шмидтом более 100 лет назад.

В остановке кровотечения участвуют: сосуды, ткань, окружа­ющая сосуды, физиологически активные вещества плазмы, фор­менные элементы крови, главная роль принадлежит тромбоци­там. И всем этим управляет нейрогуморальный регуляторный ме­ханизм.

физиологически активные вещества, принимающие участие в свертывании крови и находящиеся в плазме, называются плаз­менными факторами свертывания крови. Они обозначаются рим­скими цифрами в порядке их хронологического открытия. Неко­торые из факторов имеют название, связанное с фамилией боль­ного, у которого впервые обнаружен дефицит соответствующего фактора. К плазменным факторам свертывания крови относятся: 1ф - фибриноген, Пф — протромбин, Шф — тканевой тромбопластин, 1Уф — ионы кальция, Уф — Ас-глобулин (accelerance — ус­коряющий), или проакцелерин, У1ф — исключен из номенклату­ры, УПф - проконвертин, УШф — антигемофильный глобулин А, 1Хф — антигемофильный глобулин В, или фактор Кристмаса, Хф - фактор Стюарта - Прауэра, Х1ф - плазменный предшест­венник тромбопластина, или антигемофильный глобулин С, ХИф — контактный фактор, или фактор Хагемана, ХШф — фиб-ринстабилизирующий фактор, или фибриназа, ХГУф — фактор Флетчера (прокалликреин), ХУф — фактор Фитцджеральда — Фложе (высокомолекулярный кининоген — ВМК).

Большинство плазменных факторов свертывания крови об­разуется в печени. Для синтеза некоторых из них (II, VII, IX, X) не­обходим витамин К, содержащийся в растительной пище и синте­зируемый микрофлорой кишечника. При недостатке или сниже­нии активности факторов свертывания крови может наблюдаться патологическая кровоточивость. Это может происходить при тя­желых и дегенеративных заболеваниях печени, при недостаточ­ности витамина К. Витамин К является жирорастворимым вита­мином, поэтому его дефицит может обнаружиться при угнетении всасывания жиров в кишечнике, например при снижении желчеобразования. Эндогенный дефицит витамина К наблюдается так­же при подавлении кишечной микрофлоры антибиотиками. Ряд заболеваний, при которых имеется дефицит плазменных факто­ров, носит наследственный характер. Примером являются раз­личные формы гемофилии, которыми болеют только мужчины, но передают их женщины.

Вещества, находящиеся в тромбоцитах, получили название тромбоцитарных, или пластинчатых, факторов свертывания крови. Их обозначают арабскими цифрами. К наиболее важным тромбоцитарным факторам относятся: ПФ-3 (тромбоцитарный тромбопластин) — липидно-белковый комплекс, на котором как на матрице происходит гемокоагуляция, ПФ-4 — антигепарино-вый фактор, ПФ-5 — благодаря которому тромбоциты способны к адгезии и агрегации, ПФ-6 (тромбостенин) — актиномиозиновый комплекс, обеспечивающий ретракцию тромба, ПФ-10 — серотонин, ПФ-11 — фактор агрегации, представляющий комплекс АТФ и тромбоксана.

Аналогичные вещества открыты и в эритроцитах, и в лейко­цитах. При переливании несовместимой крови, резус-конфликте матери и плода происходит массовое разрушение эритроцитов и выход этих факторов в плазму, что является причиной интенсив­ного внутрисосудистого свертывания крови. При многих воспа­лительных и инфекционных заболеваниях также возникает диссеминированное (распространенное) внутрисосудистое сверты­вание крови (ДВС-синдром), причиной которого являются лейко­цитарные факторы свертывания крови.

По современным представлениям в остановке кровотечения участвуют 2 механизма: сосудисто-тромбоцитарный и коагуляционный.

Наши рекомендации