Присоединение галогеноводородов

При действии на этиленовые углеводороды галогеноводородов также идет реакция присоединения, но образуются моногалогенпроизводные предельных углеводородов:

СН2 Н СН3

II + ½ ¾® ½

СН2 J CH2—J

этилен иодистый этил

Легко присоединяется иодистый водород, труднее бромистый и наиболее трудно – хлористый водород.

В приведенной реакции иодистого водорода с этиленом безразлично, к которому из атомов углерода, соединенных двойной связью, присоединяется водород, а к которому галоген, т.к. оба углеродных атома равноценны. Равноценность их видна, поскольку каждый соединен с двумя водородными атомами. Если же углеродные атомы, соединенные двойной связью, не одинаковы по числу связанных с ними атомов водорода, то галогенводород взаимодействует с непредельным углеводородом с определенной закономерностью:водород из молекулы галогеноводорода присоединяется преимущественно к тому углероду по месту двойной связи, при котором имеется больше атомов водорода (к наиболее гидрогенизированному), а галоген – к углероду, при котором меньше или совсем нет атомов водорода. (Правило В.В. Марковникова)

Например:

СН2 Н СН3 СН3 СН3

II + ½ ¾® ½ ½ ½

CH I CH—I CH3—C + I CH3—C—I

½ ½ II ½ ¾® ½

CH3 CH3 CH Н CH2

Пропилен 2-иодпропан ½ ½

СН3 СН3

2-метил-2-бутен 2-иод-2-метилбутан

Эта зависимость была открыта учеником и последователем А.М. Бутлерова, русским химиком В.В. Марковниковы и известна под названием правила Марковникова. В ней проявляется общий закон химии – закон взаимного влияния связанных атомов, являющийся одним из основных положений теории строения. Очевидно, что реакционная способность углеродных атомов при двойной связи, их неравноценность и состояние самой кратной связи обусловлены влиянием, которое проявляют связанные с этими углеродными атомами радикалы.

Присоединение воды (реакция гидратации)

В обычных условиях этиленовые углеводороды не реагируют с водой, но при нагревании в присутствии катализаторов (хлористый цинк, серная кислота) элементы воды (водород и гидроксил) присоединяются к углеродным атомам по месту двойной связи с образованием спиртов:

СН2 Н t СН3

II + ½ ¾® ½

CH2 OH кат-р СН2—ОН

Этилен (ZnCl2) этиловый спирт

С гомологами этилена реакция протекает по правилу Марковникова: водород воды присоединяется преимущественно к тому углероду, при котором больше атомов водорода, а гидроксил – к тому углероду, при котором атомов водорода меньше или нет совсем:

СН2 Н t СН3

II + ½ ¾® ½

СН ОН кат-р СН—ОН

½ ½

СН3 СН3

пропилен вторичный пропиловый

(изопропиловый) спирт

В присутствии серной кислоты реакция гидратации этиленовых углеводородов протекает с образованием промежуточных продуктов присоедиения (по правилу Марковникова) – так называемых алкилсерных кислот (сложные эфиры серной кислоты):

СН2 Н СН3

II + ½ ½

CH O—SO3H ¾® CH—O—SO3H

½ ½

CH3 CH3

пропилен изопропилсерная кислота

Алкилсерные кислоты разлагаются затем водой (подвергаются гидролизу), вновь выделяя серную кислоту и образуя спирт:

СН3 СН3

½ ½

СН—О—SO3H + H—OH ¾® CH—OH + H2SO4

½ ½

CH3 изопропил- CH3 вторичный

серная кислота пропиловый (изопропиловый)

спирт

Реакция окисления

В зависимости от условий непредельные углеводороды окисляются в различной степени. При высоких температурах они сгорают, образуя СО2 и Н2О. Некоторые медленно окисляются кислородом воздуха уже при обыкновенной температуре. Обычно окисление происходит прежде всего по месту двойной связи. Одной из наиболее характерных реакций окисления является взаимодействие непредельных углеводородов с раствором KMnO4 (реакция Е.Е. Вагнера, 1886г.)

СН2 O + HOH СН2—ОН

II ¾¾® ½

CH2 KMnO4 CH2—OH

Реакция протекает в водном растворе, поэтому по месту двойной связи присоединяется кислород (из окислителя- KMnO4). [Окисление марганцевокислым калием в нейтральном или в слабощелочном растворе можно представить схемой:

7+ 4+

2 KMnO4 + Н2О ® 2MnO2 + 2KOH + 3O

В кислом растворе:

7+ 2+

2 KMnO4 + 3H2SO4 ® 2MnSO4 + K2SO4 + 3H2O + 5O

При составлении реакций окисления органических соединений обычно не пишут общего баланса реакции и для простоты над стрелкой обозначают кислород [О], отдаваемый окислителем, а под стрелкой – применяемый окислитель. (В данном случае KMnO4).] и вода, т.е. две гидроксильные группы и образуются двухатомные спирты. Рассматриваемая реакция очень чувствительна, и ее используют для качественного определения ненесыщенных соединений; уже на холоду фиолетовая окраска нейтрального или щелочного раствора KMnO4 исчезает и образуется бурый (коричневый) осадок MnO2; в кислой среде происходит полное обесцвечивание реактива.

При энергичном действии окислителей молекулы этиленовых углеводородов распадаются с разрывом углеродной цепи в том месте, где была двойная связь. Например:

Присоединение галогеноводородов - student2.ru Присоединение галогеноводородов - student2.ru Присоединение галогеноводородов - student2.ru Присоединение галогеноводородов - student2.ru 1 2 3 4 5 4O 1 2 О О 3 4 5

Присоединение галогеноводородов - student2.ru Присоединение галогеноводородов - student2.ru 1. СН3—СН=СН—СН2—СН3 ¾® СН3—С + С—СН2—СН3

кислота ОН НО кислота

СН3 СН3

Присоединение галогеноводородов - student2.ru 1 2½ 3 4 1 2½ О 3 4

Присоединение галогеноводородов - student2.ru 2. СН3—С=СН—СН3 ¾® СН3—С=О + С—СН3

Присоединение галогеноводородов - student2.ru кетон НО кислота

СН3СН3 СН3 СН3

1 2½ 3½ 4 2О 1 2 ½ 3½ 4

3. СН3—С=С—СН3 ¾® СН3—С=О + О=С—СН3

кетон кетон

Как видно из приведенных схем реакций, при окислительном распаде этиленовых углеводородов образуются "осколки", в которых атомы углерода, соединенные в этиленовом углеводороде двойной связью, превращаются в кислородсодержащие функциональные группы. В зависимости от строения исходного олефина получаются кислоты или кетоны, по составу и строению которых можно судить о строении исходного олефина и, в частности, о положении в нем двойной связи.

Присоединение галогеноводородов - student2.ru Присоединение галогеноводородов - student2.ru Большой практический интерес представляет прямое каталитическое окисление этилена кислородом воздуха, в результате которого образуется окись этилена (СН2—СН2) – ценное исходное вещество во многих синтезах.

О

Способы получения алкенов

В природе этиленовые углеводороды (олефины; алкены) встречаются довольно редко. Иногда низшие олефины в небольших количествах растворены в нефти и входят в состав попутного нефтяного газа. Лишь в некоторых месторождениях нефть содержит значительные количества высших олефинов (например, канадская нефть). Довольно много этиленовых углеводородов получается при крекинге и пиролизе углеводородов нефти и содержатся в крекинг-бензинах. Важным источником этилена, пропилена и бутиленов служат получающиеся при этом газы (газы крекинга); в таблице приведены данные о содержании в них непредельных углеводородов в зависимости от вида переработки нефтепродуктов.

При крекинге цепи молекул углеводорода разрываются в различных местах и между образующимися в виде "осколков" радикалами с более короткими цепями перераспределяется водород. Таким образом, получается смесь более коротких непредельных углеводородов. Например:

Присоединение галогеноводородов - student2.ru ¾® СН2=СН2 + СН3—СН2—СН3

СН3—СН2—СН2—СН2—СН3 ¾® СН2—СН=СН2 + СН3—СН3

пентан ¾® СН3—СН2—СН=СН2 + СН4

(этилен и пропан; пропилен и этан; бутилен и метан.)

Некоторые данные о содержании непредельных углеводородов в газах образующихся при крекинге и пиролизе высших фракций нефти

Вид переработки Содержание, %
этилена пропилена бутилена изобутилена бутана
Жидкофазный крекинг 2,1 12,4 10,3 - 10,6
Парофазный крекинг 19,8 22,4 10,0 6,9 2,0
Каталитичесий крекинг 1,2 6,8 3,3 0,5 47,9
пиролиз 20,4 17,8 4,0 6,0 1,0

Дегидрирование алканов

В присутствии катализаторов при высокой температуре происходит отщепление водорода (реакция дегидрирования) от молекул насыщенных углеводородов с образованием двойных связей. Так, при пропускании бутана над катализатором, содержащим окислы тяжелых металлов (например, Cr2O3), при температурах 400-600 оС образуется смесь бутенов:

Присоединение галогеноводородов - student2.ru СН3—СН2—СН2—СН3 ¾® СН2=СН—СН2—СН3 + Н2

бутан ¾® СН3—СН=СН—СН3 + Н2 (бутилены)

Этот метод дает особую возможность использовать в качестве сырья для химической промышленности попутный нефтяной газ. Последний, как уже знаем, содержит метан, этан, пропан и бутан. Путем дегидрирования их переводят в непредельные углеводороды, являющиеся исходными веществами для многих синтезов.

Отнятие галогенов от дигалогенпроизводных

Если в дигалогенпроизводном предельного углеводорода атомы галогена расположены при соседних углеродных атомах, то при отнятии галогена образуется двойная связь. Реакцию ведут, например, действуя на дигалогенпроизводные цинковой пылью в спиртовом растворе при нагревании. Например:

СН2—Br t CH2

½ + Zn ¾® II + ZnBr2

CH2—Br спирт CH2

Наши рекомендации