Цепь переменного тока с активным сопротивлением и индуктивностью
Рассмотрим цепь (рис. 3), в котором к активному сопротивлению (резистору) приложено синусоидальное напряжение:
U (t) = U0sin ωt (1.11)
Тогда по закону Ома ток в цепи будет равен:
I (t) = U (t)/R = U0sin ωt/R = I0 sin ωt (1.12)
Мы видим, что ток и напряжение совпадают по фазе. Векторная диаграмма для этой цепи приведена на рисунке 4:
I U
Рис. 4
Выясним, как изменяется со временем мощность в цепи переменного тока с резистором. Мгновенное значение мощности равно произведению мгновенных значений тока и напряжения:
p (t) = i(t)u(t) = I0 U0 sin ωt = I0 U0(1- cos2 ωt)/2 (1.13)
Из этой формулы мы видим, что мгновенная мощность всегда положительна и пульсирует с удвоенной частотой (рис. 5):
Это означает, что электрическая энергия необратимо превращается в теплоту независимо от направления тока в цепи.
Вычислим среднее значение мощности за период:
T T T
Pср = 1/T ∫ p(t)dt = I0U0/2T ∫ dt − I0U0/2T ∫ cos2ωt dt = (I0U0/2T) ∙T = IU = I R
0 0 0 (1.14)
поскольку второй интеграл равен нулю как интеграл от периодической функции за период.
Мы видим, что в цепи с резистором вся электрическая энергия необратимо превращается в тепловую энергию. Те элементы цепи, на которых происходит необратимое преобразование электрической энергии в другие виды энергии (не только в тепловую), называются активными сопротивлениями. Поэтому резистор представляет собой активное сопротивление.
Рассмотрим цепь (рис. 6), в котором к катушке индуктивности L, не обладающей активным сопротивлением (R=0), приложено синусоидальное напряжение (1.11):
Протекающий через катушку переменный ток создает в ней ЭДС самоиндукции eL. Тогда в соответствии со вторым правилом Кирхгофа можно записать:
U + eL = 0 (1.15)
Согласно закону Фарадея, ЭДС самоиндукции равна:
eL = −LdI/dt (1.16)
Подставив (1.16) в (1.15), имеем:
dI/dt = − eL/L = U/L = U0 sin ωt/L (1.17)
Интегрируя это уравнение, получим:
I =− U0cos ωt/ω L + const = U0sin (ωt − π/2)/ ωL+ const (1.18)
где const – постоянная интегрирования, которая говорит о том, что в цепи может быть и постоянный ток. При отсутствии постоянного тока она равна нулю. При отсутствии постоянного тока она равна нулю. Окончательно имеем:
I = I0 sin (ωt − π/2) (1.19)
где I0 = U0/ ωL. Деля обе части на √2, получим:
I = U/ ωL= U/ XL (1.20)
Соотношение (1.20) представляет собой закон Ома для цепи с идеальной индуктивностью, а величина XL= ωL называется индуктивным сопротивлением.
Из формулы (1.19) мы видим, что в рассмотренной цепи ток отстает по фазе от напряжения на π/2. Векторная диаграмма для этой цепи изображена на рисунке 7.
Вычислим мощность, потребляемую цепью с чисто индуктивным сопротивлением.
Мгновенная мощность равна:
p (t)= I0 U0 sin ωt(ωt − π/2)= − I0 U0 sin2 ωt/2 (1.21)
Мы видим, она изменяется по закону синуса с удвоенной частотой (рис. 8).
Положительные значения мощности соответствуют потреблению энергии катушкой, а отрицательные — возврату запасенной энергии обратно источнику.
Средняя за период мощность равна:
Т T
Pср = 1/T ∫ p(t)dt = (− I0 U0 /2T) ∫ sin2 ωt dt = 0 (1.22)
Мы видим, что цепь с индуктивностью мощности не потребляет – это чисто реактивная нагрузка.