Цепь переменного тока с активным сопротивлением и индуктивностью

Рассмотрим цепь (рис. 3), в котором к активному сопротивлению (резистору) приложено синусоидальное напряжение:

U (t) = U0sin ωt (1.11)

Тогда по закону Ома ток в цепи будет равен:

I (t) = U (t)/R = U0sin ωt/R = I0 sin ωt (1.12)

Мы видим, что ток и напряжение совпадают по фазе. Векторная диаграмма для этой цепи приведена на рисунке 4:

Цепь переменного тока с активным сопротивлением и индуктивностью - student2.ru Цепь переменного тока с активным сопротивлением и индуктивностью - student2.ru

I U

Рис. 4

Выясним, как изменяется со временем мощность в цепи переменного тока с резистором. Мгновенное значение мощности равно произведению мгновенных значений тока и напряжения:

p (t) = i(t)u(t) = I0 U0 sin ωt = I0 U0(1- cos2 ωt)/2 (1.13)

Из этой формулы мы видим, что мгновенная мощность всегда положительна и пульсирует с удвоенной частотой (рис. 5):

Это означает, что электрическая энергия необратимо превращается в теплоту независимо от направления тока в цепи.

Вычислим среднее значение мощности за период:

T T T

Pср = 1/T ∫ p(t)dt = I0U0/2T ∫ dt − I0U0/2T ∫ cos2ωt dt = (I0U0/2T) ∙T = IU = I R

0 0 0 (1.14)

поскольку второй интеграл равен нулю как интеграл от периодической функции за период.

Мы видим, что в цепи с резистором вся электрическая энергия необратимо превращается в тепловую энергию. Те элементы цепи, на которых происходит необратимое преобразование электрической энергии в другие виды энергии (не только в тепловую), называются активными сопротивлениями. Поэтому резистор представляет собой активное сопротивление.

Рассмотрим цепь (рис. 6), в котором к катушке индуктивности L, не обладающей активным сопротивлением (R=0), приложено синусоидальное напряжение (1.11):

Протекающий через катушку переменный ток создает в ней ЭДС самоиндукции eL. Тогда в соответствии со вторым правилом Кирхгофа можно записать:

U + eL = 0 (1.15)

Согласно закону Фарадея, ЭДС самоиндукции равна:

eL = −LdI/dt (1.16)

Подставив (1.16) в (1.15), имеем:

dI/dt = − eL/L = U/L = U0 sin ωt/L (1.17)

Интегрируя это уравнение, получим:

I =− U0cos ωt/ω L + const = U0sin (ωt − π/2)/ ωL+ const (1.18)

где const – постоянная интегрирования, которая говорит о том, что в цепи может быть и постоянный ток. При отсутствии постоянного тока она равна нулю. При отсутствии постоянного тока она равна нулю. Окончательно имеем:

I = I0 sin (ωt − π/2) (1.19)

где I0 = U0/ ωL. Деля обе части на √2, получим:

I = U/ ωL= U/ XL (1.20)

Соотношение (1.20) представляет собой закон Ома для цепи с идеальной индуктивностью, а величина XL= ωL называется индуктивным сопротивлением.

Из формулы (1.19) мы видим, что в рассмотренной цепи ток отстает по фазе от напряжения на π/2. Векторная диаграмма для этой цепи изображена на рисунке 7.

Вычислим мощность, потребляемую цепью с чисто индуктивным сопротивлением.

Мгновенная мощность равна:

p (t)= I0 U0 sin ωt(ωt − π/2)= − I0 U0 sin2 ωt/2 (1.21)

Мы видим, она изменяется по закону синуса с удвоенной частотой (рис. 8).

Положительные значения мощности соответствуют потреблению энергии катушкой, а отрицательные — возврату запасенной энергии обратно источнику.

Средняя за период мощность равна:

Т T

Pср = 1/T ∫ p(t)dt = (− I0 U0 /2T) ∫ sin2 ωt dt = 0 (1.22)

Мы видим, что цепь с индуктивностью мощности не потребляет – это чисто реактивная нагрузка.


Наши рекомендации