Основные ксенобиотики , поступающие в организм с продуктами питания. Вредные химические вещества естественного происхождения. Биогенные амины
Пищевые продукты представляют собой сложные многокомпонентные смеси, состоящие из сотен химических соединений. В состав пищевых продуктов входят, в основном, три группы соединений. Нутриенты - белки, липиды, углеводы, минеральные вещества и витамины, которые требуются организму для пластических целей, в качестве источников энергии, для нормального течения процессов пищеварения и метаболизма. Неалиментарные компоненты- соединения, участвующие в формировании органолептических качеств пищевого продукта. К ним относятся: предшественники нутриентов, продукты их распада, а также другие биологически активные вещества. Большинство веществ этой группы находится в продуктах питания в незначительных количествах. Среди них различают:
1. - антиалиментарные факторы - вещества, препятствующие перевариванию или утилизации нутриентов (например, ингибиторы протеаз, содержащиеся в бобовых);
2. - вредные химические вещества природного происхождения: постоянные компоненты некоторых натуральных продуктов (алкалоиды, пептиды); вещества, содержащиеся в продуктах при определенных условиях (соланин в картофеле); микроэлементы в высоких концентрациях за счет существования аномальных биохимических провинций. Ксенобиотики — посторонние, токсичные, потенциально опасные вещества антропогенного происхождения.
3. Значительная часть химических соединений, обладающих токсичными свойствами и содержащихся в продуктах питания, имеет естественное происхождение. Ежедневное поступление ксенобиотиков естественного происхождения при обычной диете человека составляет около 2 г, а поступление синтетических пестицидов равно 0,09 мг. Некоторые из соединений обладают выраженной канцерогенной активностью. Для количественной оценки канцерогенной активности в модельных условиях используют индекс относительной канцерогенной активности (ОКА). ОКА показывает, какой процент потенциальной канцерогенной активности, тестированной на лабораторных животных, получает человек ежедневно на протяжении своей жизни. Чем меньше значение индекса ОКА, тем выше потенциальная канцерогенная активность продукта. Несмотря на поступление в организм человека соединений с выраженной канцерогенной активностью, их действие во многом нивелируется: 1) системой детоксикации ксенобиотиков; 2)антиканцерогенным действием (антиоксиданты - аскорбиновая кислота, витамины Е и А;монотерпен-лимонен-в цитрусовых.)Важно поступление в организм достаточных количеств антиканцерогенных соединений, которые способны нейтрализовать действие ксенобиотиков естественного и антропогенного происхождения.Биогенные амины (БА) могут образовываться микроорганизмами, например при ферментативном декарбоксилировании. Произведенные с помощью микробиологической техники продукты питания (сыры, пиво) содержат значительное количество БА. При порче продуктов питания увеличивается содержание БА вследствие деятельности микроорганизмов. Высокое поступление аминов с продуктами питания при одновременном приеме определенных медикаментов способно повышать кровяное давление, например через 1)тирамин, обычно расщепляющийся в кишечнике с помощью фермента моноаминооксидазы (МАО). МАО может ингибироваться гипотензивными препаратами, антидепрессантами или противотуберкулезными препаратами таким образом, что концентрация тирамина в кишечнике увеличивается. В этом случае всасывается большое количество тирамина, что способствует освобождению норадреналина из симпатических нервных окончаний и повышению кровяного давления.
Содержание тирамина в продуктах питания составляет в среднем около 50 мкг/г. Однако в некоторых их них (шоколаде, сыре, пиве, вине и квашеной капусте) тирамин содержится в повышенных количествах. Сыр может содержать до 900 мкг/г.Пациентам с высоким кровяным давлением частое употребление этих продуктов питания может быть небезвредно.
2)серотонин (бананах, грецких орехах, помидорах), увеличивает кровяное давление.
3) гистамин, (некоторых сортах вин, где его содержание может достигать 25 мг на литр), способен вступать в соединение с этанолом. Прием значительных количеств гистамина ведет к острой интоксикации у человека, которая выражается сильными головными болями и спазмами гладкой мускулатуры.
Содержание БА в продуктах питания может был. снижено промывкой водой или сменой консервирующей жидкости.
Ртуть (Hg).
Ртуть-рассеянный элемент.В атмосферу поступает как в ходе природных процессов(испарение со всей поверхности суши; возгонка ртути из соединений, находящихся в толще земной коры ; вулканическая деятельность), так и за счёт антропогенной деятельности(пирометаллургия; цветная металлургия; сжигание любого органического топлива.
Поступившие в атмосферу пары ртути сорбируются аэрозолями, почвой, вымываются атмосферным осадками, включаясь в круговорот в почве и в воде( ионизируются, превращаются в соли, подвергаются метилированию, усваиваются растениями и животными). Метилирование неорганической ртути-ключевой этап процесса миграции ртути по пищевым цепям водных экосистем.
Метилирование ртути микроорганизмами подчиняется следующим закономерностям: 1)преобладающий продукт биол.метилирования ртути при РН, близком к нейтральному, - метилртуть 2)сорость метилирования при окислительных условиях выше, чем при анаэробных 3) кол-во образуемой метилртути удваивается при десятикратном увеличении содержания неорганической ртути
Ртуть постоянно присутствует в теле человека, но не является эссенциальным микроэлементом. Ртуть отличается высокой токсичностью для любых форм жизни. Токсическое действие ртути зависит от вида соединения: алкилртутные соединения токсичнее неорганических. Наиболее токсичны метилртуть, этилртуть- короткоцепочечные.Они больше накапливаются в организме, лучше растворяются в липидах, легче проникают через биологические мембраны. Чувствительность нервной системы к метил и этилртути высока.
В организм человека ртуть может попадать с продуктами питания растительного и животного происхождения, продуктами моря, атмосферным воздухом и водой. В производственных условиях основное значение имеет поступление ртути в организм через дыхательные виде паров или пыли. Пары ртути полностью задерживаются в дыхательных путях, если концентрация их в воздухе не превышает 0,25мг/м3. Резорбция ртути в пищеварительном тракте зависит от вида соединения: резорбция неорганических соединений составляет 2-15%, фенилртути-50-80%,метилртути-90-95%. Метилртуть стабильна в организме, др. соединения быстрее трансформируются в неорганические.Ртуть преимущественно накапливается в почках, селезёнке и печени. Органические соединения с белками легко проникают через гематоэнцефал. и плацентарный барьеры и накапливаются в голов.мозге,в том числе и плода, где их концентрация в 1,5-2 раза больше, чем у матери. В мозговой ткани метилртути содержится в 5-6 раз больше, чем в крови.
Неорганические соединения ртути нарушают обмен аскорбиновой кислоты, пиридоксина, кальция, меди, цинка, селена. Органические соединения-обмен белков, цистеина, аскорбиновой кислоты, токоферолов, железа, меди, марганца, селена.
Выводится ртуть из организма железами ЖКТ, почками,потовыми и молочеными железами, лёгкими. В грудном молоке обычно содержится 5% от концентрации её в крови. Неорганические соединения выделяются преимущественно с мочой(период полувыведения-40 сут), а органические-на 90% с калом и желчью(период полувыведения из организма-76 сут). Из организма новорождённых ртуть выводится медленнее. Она выводится из организма неравномерно. По мере выделения ртуть мобилизуется из депо.
Ртуть накапливается преимущественно в ядре клетки, затем по убыванию:в микросомах, цитоплазме, митохондриях.В основе механизма действия ртути лежит блокада биологически активных групп белковой молекулы и низкомолекулярных соединений с образованием обратимых комплексов, характеризующихся нуклеофильными лигандами. Установлено включение ртути в молекулу тРНК.
В начальные сроки воздействия малых концентраций трути имеет место значительный выброс гормонов надпочечников и активирование их синтеза. Наблюдается возрастание моноаминооксидазной активности митохондриальной фракции печени. Пары ртути проявляют нейротоксичность, от чего особенно страдают высшие отделы ЦНС. Вначале возбудимость коры повышается, затем приобретает инертность. В дальнейшем развивается запредельное торможение. Неорганические соединения ртути обладают нефротоксичностью. Есть сведения о гонадотоксическом, эмбриотоксическом и тератогенном действии соединений ртути.
Основные проявления хронического воздействия малых концентраций ртути: повышенная нервозность, ослабление памяти, депрессия, парестезия, мышечная слабость, эмоциональная лабильность, нарушение координации движений, симптомы поражения почек.К данным симптомам могут присоединяться симптомы поражения серд-сосуд сис-мы. Всё это обусловлено воздействием ртути на энзиматическую активность клеток, увеличением концентрации внутриклеточного кальция, ингибированием синтеза ДНКи РНК
Болезнь Минамата - ртутная интоксикация алиментарного происхождения, обусловленная употреблением в пищу рыбы и др гидробионтов, выловленных из водоёмов, загрязнённых ртутью(Япония)
При попадании любого кол-ва ртути в жилую зону следует выполнить следующие мероприятия:1)Изоляционные мероприятия: необходимо изолировать местонахождение ртути и само помещение. Надеть марлевую повязку и вывести из помещения всех жильцов. Открыть окна помещения и накрыть место с ртутью мокрой газетой. Загрязнённые вещи вынести из помещения. Плотно закрыть входную дверь и заклеить щель. 2)Мероприятия по снижению испаряемости ртути: снизить температуру в помещении (открыть окна). Прекратить действия в данном помещении. Изолированное помещение оставить на несколько часов. 3) Механическая демеркуризация: надеть одежду из синтетического материала, работать в резиновых перчатках. Необходимо приготовить стеклянную банку с крышкой, толстую иглу или вязальную спицу, мед .шприц, кусочки пластыря, лист плотной бумаги, настольную лампу. Смысл этого этапа состоит сборе капель в герметичную ёмкость. Для закатывания капель на лист бумаги используют толстую иглу или спицу. Поверхность подсвечивают настольной лампой. Кусочки пластыря используют для сбора мелких капель. С помощью мед шприца и толстой иглы ртуть достают из щелей. Не рекомендуется пользоваться пылесосом. Банку с собранной ртутью обязательно отдать представителям МЧС. 4) Химическая демеркуризация: для этого необходим раствор с окислительными свойствами. На литр воды добавляют несколько кристаллов марганцовки, столовую ложку соли и столовую ложку уксусной эссенции. Наносить раствор на места, где производили сбор ртути, особенно в щелях. Раствор следует оставить нанесённым на 6-8 часов, периодически смачивая водой обработанную поверхность. В заключение обработанную поверхность следует тщательно промыть всё помещение.
Кадмий (Cd)
Кадмий( 0,001 мг/л). В среднем в организм человека поступает около 10 нг кадмия в день. В ЖКТ резорбируется примерно до 5% кадмия.
После всасывания кадмий в кровотоке связывается с альбумином и транспортируется в печень и почки. Там индуцируется синтез металлсвязывающего протеина металлотинеина. После поступления в тубусные клетки Cd из комплекса металлотинеин-Cd отщепляется. Эта несвязанная форма кадмия представляет собой токсичный компонент, который при концентрации свыше 200 мг/кг приводит к поражению почек. Металлотинеин - термостабилен, молекулярная масса 5000-6000 дальтон. Отличительная его особенность- отсутствие в первичной структуре ароматических АК и наличие до 20 свободных SH-групп аминокислоты цистеина, которые подразделяются на 2 связывающих кластера(Cd3 и Cd4).
Биологический период полувыведения кадмия из печени и мышечной ткани составляет 10-35 лет. В организме курильщиков содержатся в 3-4 раза более высокие концентрации кадмия.
Накопление кадмия связано с дегенеративными изменениями слизистой носа, глотки, разрушением обонятельного эпителия, обструктивными заболеваниями ВДП и тяжёлыми поражениями почек. Впервые наблюдали интоксикацию в Японии в 1946 году при отравлении содержащими кадмий продуктами. Она сопровождалась остеомаляцией, остеопорозом и железодефицитной анемией(болезнь итай-итай), а также деформацией скелета вследствие нарушений обмена фосфата и витамина Д3.Механизм воздействия кадмия таков: В организме человека из витамина Д3 образуется в печени 25-гидрокси-Д3(25-ОН-холекальциферол, 25-ОН-Д3). В тубусных клетках почки из 25-ОН-Д3 образуется активный метаболит витамина Д3 1, 25-дигидрокси-Д3( 1, 25-(ОН)2-холекальциферол, 1, 25-(ОН)2-Д3).1,25-(ОН)2-Д3 активизирует освобождение кальция из костей и стимулирует резорбцию ионов кальция из тонкой кишки в плазму. Кадмий тормозит оба механизма. Кроме того, кадмий тормозит захват кальция в тубусных клетках почек и инактивирует в них фермент аденилатциклазу. Помиио этого, накопление кадмия может быть сопряжено с почечной артериальной гипертензией, мутагенным(но не канцерогенным) эффектом.
Свинец (Pb) - токсичный загрязнитель пищевых продуктов и воды: источники поступления в продукты питания и организм человека, механизм действия, медицинские последствия хронического низкодозового поступления в организм.
Свинец(0,03 мг/л) в воде имеет антропогенное происхождение. Существует 2 пути проникновения Pb в питьевую воду: через загрязнение свинцом почвы; через арматуру водопроводной сети. Почву загрязняют выхлопные газы автомобилей, Pb смывается талой или дождевой водой, попадает в колодцы и систему централизованного водоснабжения. В Беларуси ~35%всех детей имеют повышенные концентрации свинца в организме. Всасывание Pb в ЖКТ~8% от поступившего количества. Дети резорбируют половину поступающего Pb. В организме он соединяется с гемоглобином и распределяется по всему организму. Выведение происходит ч/з почки(75%) и ЖКТ(15%). В волосах, ногтях накапливается до 10%. При хроническом воздействии повреждается гемопоэтическая система. Pb тормозит активность ферментов синтеза гема:δ-АЛДазу,коропогеназу, феррохелатазу. В результате замедляется синтез гема и сижается уровень гемоглобина. Накопление Pb взывает преждевременные роды у беременных женщин, способен проникать ч/з плацентарный барьер, вызывая повреждения, вес ребенка при рождении, тормозит его умственное и физическое развитие. Лактат свинца, образующийся в мышцах, легко проникает в нервные и мышечные клетки, где соединяется с фосфатами и формирует барьер, препятствующий проникновению ионов Ca - парезы, параличи. Хроническая интоксикация развивается медленно. На ранних этапах наблюдается снижение адаптационных возможностей ,общая слабость, головная боль, неприятный вкус во рту, потеря аппетита, признаки анемии. Существует прямая зависимость м/у концентрацией Pb в питьевой воде и частотой психической отсталости детей, смертностью от рака почек и всех видов лейкемий.
Алюминий (Al)
(среднее потребление 30-50 мг/день)
Основные источники Al – алюминиевая посуда и упаковочный материал, имеющий покрытие из алюминиевой фольги; кислые консервированные продукты питания и напитки. Поступает также с с морковью, источником является и чайный лист. В ЖКТ резорбируется примерно 1% Al .Далее он соединяется с трансферрином и распределяется по организму: в легких его накапливается до 50 мг/кг, в мышцах и костях ~ 10 мг/кг, в мозге ~ 2мг/кг и в сыворотке крове ~10 мкг/л.Удаляется из организма только через почки.
Алюминий — необходимый микроэлемент, он влияет на активность ряда ферментов, репродуктивную способность, развитие организма.
Снижает активность лактатдегидрогеназы, щелочной фосфатазы, церулоплазмина, каталазы, блокадой активных центров ферментов, участвующих в кроветворении.
Al замедляет образование костной ткани, тормозит всасывание фтора, кальция , железа, неорганического фосфата, тормозит сокращение гладких мышц кишечной стенки. С накоплением Al связывают возникновение болезни Альцгеймера – медленно прогрессирующего дегенеративного, неврологического заболевания. Характерно то, что Al накапливается в тканях мозга и вызывает вторичную гидроцефалию, деструкцию гиппокампа, ядер переднего мозга.
Связывается с ядерным хроматином( с ДНК) и нарушает процесс транскрипции.
Болезнь Альцгеймера ответственна за 75% деменции в старческом возрасте.Хар-ся прогрессивной потерей памяти и снижением умственных способностей. Изучение болезни указывает, что степень умственного ухудшения может быть замедлена на 50% при удалении Al из организма пациентов путем специальных методов лечения.
Полихлорированные бифенилы и диоксины как опасные загрязнители окружающей среды. Источники поступления в окружающую среду. Эколого-медицинские последствия накопления в биосфере.
К полихлорированным бифенилам относится многочисленная группа неполярных хлорсодержащих соединений,которые применяются как гидравлические жидкости,невоспламеняемые жидкости,изоляторы в трасформаторах.всего возможно существование 209 подобных соед.
физ и химические свойства уникальные: невоспламеняемость;устойчивость к действи. кислот и щелочей,к окислению и гидролизу;низкой раствор в воде;термоустойчивость;высоким электрич удельным сопротивлением;низким давлением пара при обыч температуре.
ПХБ входят в состав копировальной бумаги,смазочных материалов,чернил,красок,добаваок в цемент,пестицидов,клеев.
ПХБ легко всасываются и поступают в организм при кожном,ингаляционнгом и пероральном применении.основ источникПХБ для человека-пероральное поступление с пищ продуктами,богатые жировыми компонентами.после всасывания,в зависимости от степени хлорирования,ПХБ метаболизируются в печени,в результате их токсичность увеличивается.Наличие большого числа атомов хлора в бифенильном ядре ПХБ делает их молекулу труднодоступной для действия различ ферментов.Еще может проникатьПХБ через плаценту беременных женщин,являясь причиной мертворождения.
выведение отдельных ПХБ происходит очень медленно с периодами полураспада между 1-10 лет.Выведение главным образом происходит через ЖКТ,незначительная часть-почкии с грудным молоком.
Токсический эффект ПХБ связан с действием на ЦНС,постепенное выпадение волос,наруш ф-ции печени,развитие опухолей печени,угнетается иммунная сиситема
в крови ПХБ от 2-5мкг/кг.у мужчин этот показатель выше и он неизменно повышается с возрастом.концентрация в жировой ткани ПХБ в 1000 раз выше чем в крови.
Класс полихлорированных дибенздиоксинов (ПХДБД) и дибензфуранов (ПХДБФ) насчитывает 210 изомерных соединений. Эти соединения образуются при синтезе хлорорганических соединений (например, биоцидов), при сжигании мусора (хлорсодержащих соединений), при работе двигателей внутреннего сгорания, при сжигании топлива; присутствуют в промышленных выбросах и табачном дыме. Основное количество ПХДБД и ПХДБФ поступает в организм человека с продуктами питания (рыба, мясо, молочные продукты, яйца). Выведение ПХДБД и ПХДБФ снижается при увеличении степени галогенизированности соединений. Период полувыведения составляет у человека от 5 до 7 лет.
Механизм действия 2,3,7,8-ПХДБД (самый токсичный из этой группы) связан с синтезом измененного цитохрома Р-450, который модулирует обмен веществ. Помимо этого для ПХДБД характерен иммуносупрессивный, тератогенный и канцерогенный эффекты.
Нитриты и нитраты: основные источники поступления в организм человека, действие нитритов и нитратов на организм человека, медицинская помощь при остром отравлении нитритами и нитратами.
Основные источники поступления в организм человека:
§ Пищевые продукты:
ü Овощи и фрукты: Нитраты с давних пор используются в качестве элемента минерального питания растений. Растения потребляют нитраты из почвы через корневую систему. Затем нитраты восстанавливаются под действием нитратредуктазы в нитриты и далее нитриты в аммиак (катализируется нитритредуктазой), который используется для синтеза аминокислот и белков. Одни культуры восстанавливают нитраты в корневой системе полностью, другие – в меньшей степени. Нитраты накапливаются в основном в корнях, стеблях, черешках, жилках растений. Листья и корнеплоды богаче нитратами, чем плоды. Наиболее интенсивно накапливают нитраты черная редька, столовая свекла, листовой салат, щавель, редис, ревень, сельдерей, шпинат, листья петрушки, укроп. Содержание нитратов в растениях повышается при нерациональном применении минеральных удобрений. Органические удобрения способствуют накоплению нитратов, а фосфорные и калийные у некоторых видов растений могут тормозить этот процесс.
ü Мясные и рыбные продукты: Нитриты и нитраты добавляются в мясные и некоторые рыбные продукты с целью: улучшении вкуса и запаха, стабилизации цвета, предотвращения развития патогенной микрофлоры.
ü Сыр: Нитраты применяются при производстве некоторых сыров, предотвращая развитие посторонней микрофлоры.
§ Вода: Содержание нитратов в поверхностных и подземных водах варьирует в широких пределах в зависимости от геохимических условий, применения азотистых удобрений, промышленных выбросов азотистых соединений, методов удаления отходов и продуктов жизнедеятельности. В воде системы городского водоснабжения содержание нитратов обычно невысокое (до 10 мг/л). Большие концентрации нитратов обнаруживаются в грунтовых водах и в колодезной воде. Нитраты начинают ощущаться в воде уже при уровне около 8 мг/л, они придают ей вяжущий, кисловато-соленый вкус. При содержании нитратов 1500-2000 мг/л вода имеет горький вкус и непригодна к употреблению. Нитраты, поступающие в организм человека с водой, в 1, 25 раз токсичнее, чем нитраты, поступающие с продуктами питания.
§ Воздух: Содержание нитратов в воздухе варьирует от 1 до 40 мг/м3. При высоких концентрациях в воздухе оказывают раздражающее действие на верхние дыхательные пути.
Действие нитритов и нитратов на организм человека:
Нитраты, поступающие в организм человека, легко всасываются в верхних отделах ЖКТ. Основная часть нитратов метаболизируется обитающей в ЖКТ кишечной микрофлорой. В зависимости от вида микроорганизмов, рН среды и имеющихся питательных веществ образуются: оксиды азота, гидроксиламин, аммиак. Наибольшую опасность для человека представляют нитриты. Легко всасываясь в ЖКТ, они попадают в кровь и, проникая через мембрану эритроцитов, вступают в реакцию с гемоглобином. В ходе окислительно-восстановительной реакции железо переходит в трехвалентное, в результате гемоглобин окисляется в метгемоглобин, нитриты восстанавливаются в NO, и нарушается функция гемоглобина. В результате кислород поступает в ткани в недостаточном количестве, несмотря на усиленную оксигенацию крови. В эритроцитах здорового человека в среднем содержится 2% метгемоглобина. Если его содержание превысит 50% человек погибает. Нитраты также рассматриваются в качестве одного из основных предшественников канцерогенных N-нитрозосоединений. Нитрозамины в больших концентрациях оказывают выраженный гепатотоксический эффект. Установлена прямая корреляция между количеством применяемых азотистых удобрений и смертностью от рака желудка.
Хронические отравления детей нитратами вызывают:
ü Тенденции к увеличению роста и массы тела при уменьшении окружности грудной клетки, мышечной силы кистей рук, ЖЕЛ
ü ↑ возбудимости ЦНС
ü Нарушение сердечной деятельности (↑ длительности сердечного цикла) вследствие тканевой гипоксии
ü Усиление активности сорбитдегидрогеназы и холинэстеразы, активности альдолазы
ü Изменение ряда иммунологических показателей: напряжение Т-клеточного иммунитета, дисбаланс В-системы иммунитета, снижение активности факторов неспецифической защиты
Медицинская помощь при остром отравлении нитритами и нитратами:
Первая помощь:
· Промывка желудка водой с добавлением питьевой соды
· Назначение адсорбента (активированный уголь), солевого слабительного
· Полный покой (экономное использование энергии)
Снижение содержания метгемоглобина:
ü Введение метиленового синего 1%-й и р-р внутривенно, 10 мг/кг, вводится порциями с интервалом 10-15 мин или хромосмон ( 1%-й р-р метиленового синего в 25%-м р-ре глюкозы)
ü Назначение тиосульфата натрия 30% р-р внутривенно медленно вводят 5-10 мл
ü Введение аскорбиновой кислоты 5%-й р-р, до 50-60 мл
Оксигенотерапия
Форсированный диурез
Назначение сердечных средств