Побочная подгруппа 22 группа
Элементы этой подгруппы — цинк, кадмий и ртуть — характеризуются наличием двух электронов в наружном слое атома и восемнадцати в предыдущем. Строение двух наружных электронных оболочек их атомов можно отразить формулой (п— l)s2(n—> 1 )p6(n-1)d10ns2.
Восстановительные свойства элементов подгруппы цинка выражены значительно слабее, чем у элементов главной подгруппы. Это объясняется меньшими размерами атомов и, соответственно, более высокими энергиями ионизации этих элементов по сравнению с соответствующими элементами главной подгруппы
У атомов цинка, кадмия и ртути, как и у атомов элементов подгруппы меди, d-подуровень второго снаружи электронного слоя
целиком заполнен. Однако у элементов подгруппы цинка этот подуровень уже вполне стабилен и удаление из него электронов требует очень большой затраты энергии. Поэтому рассматриваемые элементы проявляют в своих соединениях степень окислениости +2. Ртуть, кроме того, образует соединения, в которых ее степень окислениости равна +1; но, как будет показано ниже,и в этих соединениях ртуть следует считать двухвалентной.
Характерной особенностью элементов подгруппы цинка, сближающей их с элементами подгруппы меди, является их склонность к комплексообразованию.
Цинк (Zincum). Главные природные соединения цинка, из которых его добывают, ■— минералы галмей ZnC03 и цинковая об- манка ZnS. Общее содержание цинка в земной коре составляет приблизительно 0,01 % (масс.).
Большинство цинковых руд содержат небольшие количества цинка, поэтому их предварительно обогащают, получая цинковый концентрат. Последний подвергают обжигу; при этом сульфид цинка превращается в оксид:
2ZnS + 302 = 2ZnO + 2S02f
Обжиг ведется в многоподовых или в шахтных печах. В последнее время при обжиге цинковых руд широко применяется обжиг в «кипящем слое».
Из обожженного концентрата цинк извлекают, восстанавливая его коксом и отгоняя образующиеся пары цинка.
Другой метод восстановления цинка заключается в электролитическом выделении его из сульфата. Последний получается обработкой обожженных концентратов серной кислотой.
Цинк — голубовато-серебристый металл. При комнатной температуре он довольно хрупок, но при 100—150 °С он хорошо гнется и прокатывается в листы. При нагревании выше 200 °С цинк становится очень хрупким. На воздухе он покрывается тонким слоем оксида или основного карбоната, предохраняющим его от дальнейшего окисления. Вода почти не действует на цинк, хотя он и стоит в ряду напряжений значительно раньше водорода. Это объясняется тем, что образующийся на поверхности цинка при взаимодействии его с водой гидроксид практически нерастворим и препятствует дальнейшему течению реакции. В разбавленных же кислотах цинк легко растворяется с образованием соответствующих солей. Кроме того, цинк, подобно бериллию и другим металлам, образующим амфотерные гидроксиды, растворяется в щелочах. Если сильно нагреть цинк в атмосфере воздуха, то пары его воспламеняются и сгорают зеленовато-белым пламенем, образуя ZnO.
Применение цинка очень разнообразно. Значительная часть его идет для нанесения покрытий на железные и стальные изделия, предназначенные для работы в атмосферных условиях или в воде. При этом цинковые покрытия в течение многих лет хорошо защищают основной металл от коррозии. Однако в условиях высокой влажности воздуха при значительных колебаниях температуры, а также в морской воде цинковые покрытия неэффективны. Широкое промышленное использование имеют сплавы цинка с алюминием, медью и магнием. С медью цинк образует важную группу сплавов — латуни (см. § 200). Значительное количество цинка расходуется для изготовления гальванических элементов.
Оксид цинка ZnO — рыхлый белый порошок, желтеющий при нагревании, но при охлаждении снова становящийся белым. Оксид цинка применяется для изготовления белой масляной краски (цинковые белила), в медицине и косметике (для приготовления различных мазей); значительная часть получаемого оксида цинка используется в качестве наполнителя резины.
Гидроксид цинка Zn(OH)2 выпадает в виде белого осадка при действии щелочей на растворы солей цинка:
Zn2+ + 20Н~ = Zn(OH)2|
Осадок легко растворяется в кислотах с образованием солей цинка и в избытке щелочей с образованием цинкатов. Таким образом, гидроксид цинка — амфотерное соединение. Так, с NaOH протекает реакция:
Zn(OH)2 + 2NaOH = Na2Zn02 + 2Н20
Как и в случае бериллатов (см. § 209), при образовании цинкатов происходит не только замещение водорода в Zn(OH)2 на металл, но и присоединение гидроксид-ионов. В частности, в твердом состоянии выделены гидроксоцинкаты, отвечающие формулам Na2 [Zn (ОН) 4j, Ваг [Zn (ОН) 6].
Растворение металлического цинка в щелочах тоже сопровождается образованием гидроксоцинкатов, например: Zn + 2NaOH + 2H2Q = Na2[Zn(OH)4] + H2f
Гидроксид цинка растворяется также в водном растворе аммиака. При этом образуются комплексные ионы [Zn(NH3)4]2+:
Zn(OH)2 + 4NH3 = [Zn(NH3)4]2+ + 20Н"
Zn(OH)2 — слабый электролит. Поэтому все соли цинка, в том числе и цинкаты, в водной среде гидролизуются.
Сульфат цинка ZnS04. Из водного раствора выделяется в виде кристаллогидрата состава ZnS04-7H20 и в таком виде называется цинковым купоросом. Применяется при крашении и ситцепечатании, при гальваническом цинковании (в качестве главного компонента электролита), в медицине, а также служит исходным веществом для получения других соединений цинка.
Хлорид цинка ZnCl2. Эту соль трудно получить в безводном состоянии. Обычно она содержит около 5 % воды и основного хлорида. Раствор ZnCl2 применяется для травления металлов; при паянии он способствует удалению оксидов с поверхности металла в момент пайки. Для этой же цели при пайке и сварке металлов применяется тетрахлорцинкат аммония (NH4)2[ZnCU] (или ZnCl2-2NH4Cl).
Сульфид цинка ZnS. Это — один из немногих сульфидов, имеющих белый цвет. Сульфид цинка получается при действии сульфидов щелочных металлов или аммония на соли цинка:
Zn2+ + S2- = ZnS j.
Сульфид цинка, а также оксид цинка входят в группу веществ, обладающих способностью люминесцировать — испускать холодное свечение в результате действия на них лучистой энергии или электронов. Явление люминесценции широко используется в науке и технике. Так, большое значение приобрел люминесцентный анализ, люминесцентные лампы применяются для освещения, люминесцентные экраны — важнейшая часть электронно-лучевых приборов.
Кадмий (Cadmium). По своим свойствам кадмий сходен с цинком и обычно содержится как примесь в цинковых рудах. По распространенности в природе он значительно уступает цинку; содержание кадмия в земной коре составляет всего около Ю-5 % (масс.).
Получают кадмий из отходов цинкового производства путем обработки последних серной кислотой с последующим выделением металлического кадмия цинком:
CdS04 + Zn = ZnS04 + Cd
Для очистки полученный продукт растворяют в разбавленной серной кислоте и подвергают электролизу.
Кадмий представляет собой серебристо-белый, мягкий, ковкий, тягучий металл. В ряду напряжений он стоит дальше цинка, но спереди водорода и вытесняет последний из кислот. Поскольку Cd(OH)2 — слабый электролит, то соли кадмия гидролизуются и их растворы имеют кислую реакцию.
Кадмий сильно поглощает медленные нейтроны. Поэтому кадмиевые стержни применяют в ядерных реакторах для регулирования скорости цепной реакции. Кадмий используется в щелочных аккумуляторах (см. § 244), входит как компонент в некоторые сплавы. Например, сплавы меди, содержащие около 1 % Cd (кадмиевая бронза), служат для изготовления телеграфных, телефонных, троллейбусных проводов, так как эти сплавы обладают большей прочностью и износостойкостью, чем медь. Ряд легкоплавких сплавов, например, применяющиеся в автоматических огнетушителях, содержат кадмий. Несмотря на сравнительно высокую стоимость, кадмий применяется для к а д м и р о в а н и я стальных изделий, так как он несет на своей поверхности оксидную пленку, обладающую защитным действием. В морской воде и в некоторых других условиях кадмирование более эффективно, чем цинкование.
При сильном накаливании кадмий сгорает, превращаясь в бурый оксид кадмия CdO.
Г ид роке ид кадмия Cd(OH)2 в отличие от гидроксида цинка не обладает заметно выраженными кислотными свойствами и практически не растворяется в щелочах.
Из солей кадмия отметим сульфид кадмия CdS, выпадающий в виде желтого осадка из растворов солей кадмия при действии сероводорода. Сульфид кадмия применяется для изготовления желтой краски и цветных стекол.
Все растворимые в воде и в разбавленных кислотах соединения кадмия ядовиты. Весьма опасно также вдыхание воздуха, содержащего «дым» оксида кадмия.
Ртуть (Hydrargyrum). Ртуть мало распространена в природе; содержание ее> в земной коре составляет всего около 10~6 % (масс.). Изредка ртуть встречается в самородном виде, вкрапленная в горные породы; но главным образом она находится в природе в виде ярко-красного сульфида ртути HgS, или киновари. Этот минерал применяется для изготовления красной краски.
Из киновари металлическую ртуть получают обжигом руды. При этом ртуть выделяется в виде паров и конденсируется в охлаждаемом приемнике:
HgS + о2 = Hg + so2
Ртуть — единственный металл, находящийся при комнатной температуре в жидком состоянии. Она широко используется в химической промышленности: в качестве катода при электролитическом производстве гидроксида натрия и хлора, как катализатор при получении многих органических соединений и при растворении урановых блоков (в атомной энергетике). Ее применяют для изготовления ламп дневного света (см. § 214), кварцевых ламп, манометров и термометров. В горном деле ртутью пользуются для отделения золота от неметаллических примесей.
Ртуть обладает способностью растворять в себе многие металлы, образуя с ними частью жидкие, частью твердые сплавы, называемые амальгамами. При этом нередко получаются химические соединения ртути с металлами.
Амальгама натрия широко применяется в качестве восстановителя. Амальгамы олова и серебра применяются при пломбировании зубов.
Особенно легко образуется амальгама золота, вследствие чего золотые изделия не должны соприкасаться с ртутью. Железо не образует амальгамы, поэтому ртуть можно перевозить в стальных сосудах.
Ртуть обычно содержит в виде примеси другие металлы. Большую часть примесей можно удалить, взбалтывая ртуть с раствором нитрата ртути(II); при этом металлы, стоящие в ряду напряжений до ртути (а к ним относится большинство металлов), переходят в раствор, вытесняя из него эквивалентное количество ртути. Полная очистка ртути достигается путем ее многократной перегонки, лучше всего под уменьшенным давлением.
Из металлов подгруппы цинка ртуть наименее активна вследствие высокой энергии ионизации ее атомов (см. табл. 34). Соляная и разбавленная серная кислота, а также щелочи не действуют на ртуть. Легко растворяется ртуть в азотной кислоте. Концентрированная серная кислота растворяет ртуть при нагревании.
На воздухе ртуть при комнатной температуре не окисляется. При продолжительном нагревании до температуры, близкой к температуре кипения, ртуть соединяется с кислородом воздуха, образуя красный оксид ртути (U) (или окись ртути) HgO, который при более сильном нагревании снова распадается на ртуть и кислород. В этом соединении степень окисленности ртути равна +2. Известен и другой оксид ртути черного цвета, в котором степень окисленности ртути равна +1, — оксид ртути(1) (или закись ртути) Hg20,
Во всех соединениях ртути(I) атомы ртути связаны между собой, образуя двухвалентные группы —Hg2— (—Hg—Hg—).
Следовательно, ртуть двухвалентна и в этих соединениях, но одна единица валентности каждого атома ртути затрачивается здесь на связь с другим атомом ртути. Эта связь сохраняется и в растворах солей ртути(I), которые содержат ионы ртути. Таким образом, состав солей ртути (I), содержащих одновалентный кислотный остаток R, следует изображать не эмпирической формулой HgR, а формулой Hg2R2 (например, Hg2Cl2).
Одна из особенностей ртути заключается в том, что для нее неизвестны гидроксиды. В тех случаях, когда можно было бы ожидать их образования, получаются безводные оксиды. Так, при действии щелочей на растворы солей ртути(I) получается буровато- черный осадок оксида ртути(I):
Hgf + 20Н~ = Hg20| + Н20
Точно так же из растворов солей ртути (II) щелочи осаждают оксид ртути (II):
Hg" + 20 Н" = HgO| + Н20
Образующийся осадок имеет желтый цвет, но при нагревании переходит в красную модификацию оксида ртути(II).
Нитрат ртути (I) Hg2(N03)2— одна из немногих растворимых солей ртути(I). Получается при действии разбавленной холодной азотной кислоты на избыток ртути:
6Hg + 8HN03 3Hg2(N03)2 + 2NOf + 4Н20
Хлорид ртути(1) Hg2Cl2, или каломель, представляет собой белый, нерастворимый в воде порошок. Его приготовляют, нагревая смесь HgCl2 с ртутью:
HgCl2 + Hg = Hg2Cl2
Каломель может быть получена также действием соляной кислоты или хлорида натрия на растворимые соли ртути(I):
Hg2/ + 2СГ = Hg2CU
Нитрат ртути(II) Hg(N03)2 получается при действии избытка горячей азотной кислоты на ртуть. Хорошо растворим в воде. В разбавленных растворах при отсутствии свободной кислоты гидролизуется с образованием белого осадка основной соли Hg0-Hg(N03)2. При нагревании с большим количеством воды основная соль также разлагается, в результате чего получается оксид ртути(II).
Хлорид ртути(П), или сулема, HgCl2 может быть получен непосредственным взаимодействием ртути с хлором. Это бесцветное вещество, сравнительно мало растворимое в холодной воде (6,6 г в 100 г воды при 20 °С). Однако с повышением температуры
растворимость сулемы сильно возрастает, достигая при 100°С 58 г в 100 г воды. Из раствора HgCl2 кристализуется в виде длинных блестящих призм. Обычно эту соль получают, нагревая сульфат ртути(II) с хлоридом натрия:
HgS04 + 2NaCl = Na2S04 + HgCl2
Образующаяся сулема сублимируется; от последнего слова она и получила свое название.
Водный раствор сулемы практически не проводит электрического тока. Таким образом, сулема—одна из немногих солей, которые почти не диссоциируют в водном растворе на ионы. Как указывалось на стр. 147, это объясняется сильной поляризующей способностью иона Hg2+.
Сулема, как и все растворимые соли ртути, — сильный яд. Она используется для протравливания семян, дубления кожи, получения других соединений ртути, при крашении тканей, как катализатор в органическом синтезе и как дезинфицирующее средство (стр. 352).
Иодид ртути( I!) Hgl2 выпадает в виде красивого оранжево-красного осадка при действии раствора нодида калия на соли ртути(II):
Hg2+ + 2 Г = Hgl2|
В избытке иоднда калия соль легко растворяется, образуя бесцветный раствор комплексной соли K,2[HgI4]:
Hgl2 + 2KI = K2IHgI4]