Понятие сложной системы
Первым и наиболее распространенным определением понятия «сложная система» является… определение, которого никто не давал. В большинстве случаев специалисты пользуются понятием «сложная система», попросту не определяя его — апеллируя к здравому смыслу и житейскому опыту. К сожалению, из этого умолчания рождается масса недоразумений и конфликтов, как среди «системщиков», так и среди тех, кто пытается использовать теорию систем для решения практических задач.
Другой подход демонстрируют специалисты в области общей теории систем, определяющие сложные системы, как системы, в которых в качестве хотя бы одного из компонентов выступает человек. Соответственно, в этот разряд попадают все системы, в которых реализуется функция целеполагания.
Специалисты в области системной инженерии или системотехники используют иной критерий сложности. Для них сложными системами являются такие системы, в качестве хотя бы одного из компонентов которых выступает система. При этом к системам, выступающим в роли элементов системы высшего уровня предъявляется требование неоднородности — без этого система не может считаться сложной. В противном случае система является либо обычной (система, как таковая), либо может быть отнесена к классу больших систем (но не сложных). Этот подход более характерен для технических приложений системного анализа.
Специалисты в области биологии, медицины и иных наук, связанных с изучением живых организмов, склонны рассматривать в качестве сложной системы любую организованную живую материю или совокупность взаимосвязанных организмов. Такой критерий сложности также является оправданным.
Некоторые исследователи склонны считать сложными системы, для описания которых требуется использовать многомодельные методы исследований и многокритериальные методы оценивания эффективности. Собственно, это замаскированная попытка определить сложность по образцу первых двух из числа уже приведенных определений.
Еще одна группа исследователей в качестве критерия сложности использует наличие системной динамики (невозможность описать систему с помощью статической модели — по существу переход к тому же многомодельному исследованию).
К числу свойств сложных систем, которые могут рассматриваться в качестве «показателя сложности» могут быть отнесен целый ряд свойств, из которого наиболее весомыми являются следующие:
- свойство эмерджентности[62];
- свойство отставания управления от специализации;
- свойства способности к адаптации, самосовершенствованию, самовоспроизводству, средопреобразованию.
Эмерджентность — это новоприобретенное свойство системы, возникновение которого не может рассматриваться как итог примитивного суммирования показателей ее элементов, а является результатом возникновения системных связей и адаптивного перераспределения функций между элементами. Одним из альтернативных названий свойства эмерджентности является название «свойство организованной сложности». Характеристики всякой системы занимают одно из «промежуточных положений» в пространстве от примитивной физической аддитивности (аналог векторной суммы) до абсолютной целостности (эмерджентности).
Функционирование сложных систем связано с процессами развития систем, в том числе — с процессами развития специализации элементов и совершенствования координации их деятельности. Еще одним интересным свойством сложных систем является свойство отставания управления от специализации в сложных системах. В связи с этим был сформулирован закон необходимого разнообразия (закон Эшби), гласящий, что для того, чтобы некоторая система могла управлять другой системой, она должна обладать сложностью не меньшей, чем сложность управляемой системы.
Объединение в одну группу таких свойств, как способность к адаптации, самосовершенствованию, самовоспроизводству и преобразованию среды функционирования не случайно, поскольку они имеют общий корень — сложные системы способны создавать внутри себя информационную модель себя и окружающей среды.
Существуют различные критерии оценки сложности, в том числе — в кибернетике, социологии, политологии — везде, где исследователь, сталкиваясь с проблемой размерности, ищет выход в построении некоторым образом организованной совокупности абстрактных объектов, рассмотрение которых в качестве единого целого обеспечивает возможность «изолированного» решения задач, относящихся к некоторому уровню в общей иерархии задач исследования.
Таким образом, мы вышли на некоторую общую закономерность: понятие сложной системы связано с иерархическим устройством самой системы и/или моделей, используемых для ее описания. Небольшой комментарий по поводу употребления «и/или» — в ряде случаев прием «иерархизации» используется исключительно на модельном уровне — такой подход может быть выражением специфики мышления и способа организации целей субъекта исследований. В этом случае сложность — не есть атрибут системы, а лишь выражение способа ее рассмотрения, принципа упорядочения целей исследований или результат проявления действия ограничений на допустимую для исследователя и его инструментария размерность задач.
Таким образом, мы можем перейти к этапу формулирования своего, специфического, определения сложной системы. Авторы считают, что сложная система — это система, для рассмотрения которой в контексте конкретной проблемной ситуации необходимо использовать прием иерархического упорядочивания ее элементов в интересах понижения размерности решаемых задач[63].
А поскольку системный анализ имеет в качестве предмета исследований сложные системы, можно утверждать, что системный анализ может рассматриваться в качестве средства понижения размерности задач, структурирования целей. Системный анализ — это инструмент, позволяющий исследователю преодолеть ограничения на допустимую размерность задач, ядром которого является функция целеполагания исследователя. В зависимости от целей анализа один и тот же объект исследования может рассматриваться либо как некая неделимая сущность, либо как системное единство его частей.
Несомненно, что главной задачей системного анализа является получение модели, предельно адекватной объекту исследования. А уже на втором этапе, методом задания изменений внешних воздействий добиваются достижения необходимого отклика в поведении модели системы и транспонируют (переносят) его на объект исследования. При этом могут достигаться различные, подчас противоположные цели, и они могут быть как структурированными, так и абсолютно не связанными друг с другом.