Закон Максвелла для распределения молекул идеального газа по скоростям и энергиям теплового движения

При выводе основного уравнения молекулярно-кинетической теории молекулам за­давали различные скорости. В результате многократных соударений скорость каждой молекулы изменяется по модулю и на­правлению. Однако из-за хаотического движения молекул все направления дви­жения являются равновероятными, т. е. в любом направлении в среднем дви­жется одинаковое число молекул.

По молекулярно-кинетической теории, как бы ни изменялись скорости молекул при столкновениях, средняя квадратичная скорость молекул массой m0 в газе, на­ходящемся в состоянии равновесия при Т = const, остается постоянной и равной <vкв> =Ö3kT/m0. Это объясняется тем, что в газе, находящемся в состоянии равновесия, устанавливается некоторое стационарное, не меняющееся со временем распределение молекул по скоростям, ко­торое подчиняется вполне определенному статистическому закону. Этот закон теоре­тически выведен Дж. Максвеллом.

При выводе закона распределения мо­лекул по скоростям Максвелл предпола­гал, что газ состоит из очень большого числа N тождественных молекул, находя­щихся в состоянии беспорядочного тепло­вого движения при одинаковой температу­ре. Предполагалось также, что силовые поля на газ не действуют.

Закон Максвелла описывается некото­рой функцией f(v), называемой функцией распределения молекул по скоростям.Ес­ли разбить диапазон скоростей молекул на

малые интервалы, равные dv, то на каж­дый интервал скорости будет приходиться некоторое число молекул dN(v), имеющих скорость, заключенную в этом интервале. Функция f(v) определяет относительное число молекул dN (v)/N, скорости которых лежат в интервале от v до v+dv, т. е.

откуда

f(v)=dN(v)/Ndv

Применяя методы теории вероятно­стей, Максвелл нашел функцию f(v) — закон для распределения молекул идеаль­ного газа по скоростям:

Закон Максвелла для распределения молекул идеального газа по скоростям и энергиям теплового движения - student2.ru

Из (44.1) видно, что конкретный вид фун­кции зависит от рода газа (от массы моле­кулы) и от параметра состояния (от тем­пературы Т).График функции (44.1) приведен на рис. 65. Так как при возрастании v множитель Закон Максвелла для распределения молекул идеального газа по скоростям и энергиям теплового движения - student2.ru уменьшается быстрее, чем растет множитель v2, то функция f(v), начинаясь от нуля, достигает максимума при vв и затем асимптотически стремится к нулю. Кривая несимметрична относи­тельно vв.

Относительное число молекул dN(v)/N, скорости которых лежат в интервале от v до v+dv, находится как площадь бо­лее светлой полоски на рис. 65. Площадь, ограниченная кривой распределения

Закон Максвелла для распределения молекул идеального газа по скоростям и энергиям теплового движения - student2.ru

и осью абсцисс, равна единице. Это озна­чает, что функция f(v) удовлетворяет усло­вию нормировки

Закон Максвелла для распределения молекул идеального газа по скоростям и энергиям теплового движения - student2.ru

Скорость, при которой функция рас­пределения молекул идеального газа по скоростям максимальна, называется наи­более вероятной скоростью.Значение наи­более вероятной скорости можно найти продифференцировав выражение (44.1) (постоянные множители опускаем) по ар­гументу v, приравняв результат нулю и ис­пользуя условие для максимума выраже­ния f(v):

Закон Максвелла для распределения молекул идеального газа по скоростям и энергиям теплового движения - student2.ru

Значения v=0и v=¥ соответствуют минимумам выражения (44.1), а значе­ние v, при котором выражение в скобках становится равным нулю, и есть искомая наиболее вероятная скорость vв:

Закон Максвелла для распределения молекул идеального газа по скоростям и энергиям теплового движения - student2.ru

Из формулы (44.2) следует, что при повышении температуры максимум функ­ции распределения молекул по скоростям (рис. 66) сместится вправо (значение наи­более вероятной скорости становится больше). Однако площадь, ограниченная кривой, остается неизменной, поэтому при повышении температуры кривая распреде­ления молекул по скоростям будет растя­гиваться и понижаться.

Средняя скорость молекулы <v> (средняя арифметическая скорость)

Барометрическая формула. Распределение Больцмана

При выводе основного уравнения молекулярно-кинетической теории газов и макcсвелловского распределения молекул по скоростям предполагалось, что на молеку­лы газа внешние силы не действуют, по­этому молекулы равномерно распределены по объему. Однако молекулы любого газа находятся в потенциальном поле тяготе­ния Земли. Тяготение, с одной стороны, и тепловое движение молекул — с другой, приводят к некоторому стационарному со­стоянию газа, при котором давление газа с высотой убывает.

Выведем закон изменения давления с высотой, предполагая, что поле тяготе­ния однородно, температура постоянна и масса всех молекул одинакова. Если атмосферное давление на высоте А равно р (рис. 67), то на высоте h + dh оно равно p+dp (при dh>0 dp<0, так как давле­ние с высотой убывает). Разность давле­ний р и p + dp равна весу газа, заклю­ченного в объеме цилиндра высотой Ah с основанием площадью, равной единице площади:

р-(p+dp)=rgh,

где r — плотность газа на высоте h (dh настолько мало, что при изменении высоты в этом пределе плотность газа можно счи­тать постоянной).

Следовательно,

dр=-rgdh. (45.1)

Воспользовавшись уравнением состоя­ния идеального газа pV = (m/M)RT (т — масса газа, М—молярная масса газа),

Закон Максвелла для распределения молекул идеального газа по скоростям и энергиям теплового движения - student2.ru

находим, что

Подставив это выражение в (45.1), получим

Закон Максвелла для распределения молекул идеального газа по скоростям и энергиям теплового движения - student2.ru

С изменением высоты от h1 до h2. дав­ление изменяется от р1до p2(рис. 67), т. е.

Закон Максвелла для распределения молекул идеального газа по скоростям и энергиям теплового движения - student2.ru

Выражение (45.2) называется барометри­ческой формулой.Она позволяет найти атмосферное давление в зависимости от высоты или, измерив давление, найти вы­соту. Так как высоты обозначаются отно­сительно уровня моря, где давление счита­ется нормальным, то выражение (45.2) может быть записано в виде

Закон Максвелла для распределения молекул идеального газа по скоростям и энергиям теплового движения - student2.ru

где р — давление на высоте h.

Прибор для определения высоты над земной поверхностью называется высото­мером(или альтиметром).Его работа ос­нована на использовании формулы (45.3). Из этой формулы следует, что давление с высотой убывает тем быстрее, чем тяже­лее газ.

Барометрическую формулу (45.3) можно преобразовать, если воспользо­ваться выражением (42.6) p=nkT:

Закон Максвелла для распределения молекул идеального газа по скоростям и энергиям теплового движения - student2.ru

где n — концентрация молекул на высо­те h, n0— то же на высоте h=0. Так как M = m0NA (NA— постоянная Авогадро, m0 —масса одной молекулы), а R=kNA, то

Закон Максвелла для распределения молекул идеального газа по скоростям и энергиям теплового движения - student2.ru

где m0gh=П — потенциальная энергия молекулы в поле тяготения, т. е.

Закон Максвелла для распределения молекул идеального газа по скоростям и энергиям теплового движения - student2.ru

Выражение (45.5) называется распре­делением Больцманаво внешнем потенци­альном поле. Из него следует, что при постоянной температуре плотность газа больше там, где меньше потенциальная энергия его молекул.

Если частицы имеют одинаковую мас­су и находятся в состоянии хаотического теплового движения, то распределение Больцмана (45.5) справедливо в любом внешнем потенциальном поле, а не только в поле сил тяжести.

Закон Максвелла для распределения молекул идеального газа по скоростям и энергиям теплового движения - student2.ru

определяется по формуле

Закон Максвелла для распределения молекул идеального газа по скоростям и энергиям теплового движения - student2.ru

Подставляя сюда f(v) и интегрируя, по­лучим

Закон Максвелла для распределения молекул идеального газа по скоростям и энергиям теплового движения - student2.ru

Скорости, характеризующие состояние газа: 1) наиболее вероятная vв=Ö2RT/М; 2) средняя <v>=Ö8RT/(pМ)=1,13vв; 3) средняя квадратичная <vкв> =Ö3RT/М =1,22vв (рис.65).

Исходя из распределения молекул по скоростям

Закон Максвелла для распределения молекул идеального газа по скоростям и энергиям теплового движения - student2.ru

можно найти распределение молекул га­за по значениям кинетической энергии e. Для этого перейдем от переменной v к переменной e=m0v2/2. Подставив в (44.4) v =Ö (2e//m0 и

dv=(2m0e)-1/2de, получим

Закон Максвелла для распределения молекул идеального газа по скоростям и энергиям теплового движения - student2.ru

где (dN(e) — число молекул, имеющих ки­нетическую энергию поступательного дви­жения, заключенную в интервале от e до e+de.

Таким образом, функция распределе­ния молекул по энергиями теплового дви­жения

Закон Максвелла для распределения молекул идеального газа по скоростям и энергиям теплового движения - student2.ru

Средняя кинетическая энергия <e> молекулы идеального газа

Закон Максвелла для распределения молекул идеального газа по скоростям и энергиям теплового движения - student2.ru

т. е. получили результат, совпадающий с формулой (43.8).

Среднее число столкновений и средняя длина свободного пробега молекул

Молекулы газа, находясь в состоянии хао­тического движения, непрерывно сталки­ваются друг с другом. Между двумя по­следовательными столкновениями молеку­лы проходят некоторый путь l, который называется длиной свободного пробега.В общем случае длина пути между по­следовательными столкновениями различ­на, но так как мы имеем дело с огромным числом молекул и они находятся в бес­порядочном движении, то можно говорить о средней длине свободного пробега моле­кул<l>.

Минимальное расстояние, на которое сближаются при столкновении центры двух молекул, называется эффективным диаметром молекулыd (рис.68). Он за­висит от скорости сталкивающихся моле­кул, т. е. от температуры газа (несколько уменьшается с ростом температуры).

Так как за 1 с молекула проходит в среднем путь, равный средней арифметической скорости <v>, и если (z) —сред­нее число столкновений, испытываемых одной молекулой газа за 1 с, то средняя длина свободного пробега

Закон Максвелла для распределения молекул идеального газа по скоростям и энергиям теплового движения - student2.ru

<l>=<v>/<z>.

Для определения <z> представим себе молекулу в виде шарика диаметром d, которая движется среди других «застыв­ших» молекул. Эта молекула столкнется только с теми молекулами, центры кото­рых находятся на расстояниях, рав­ных или меньших d, т. е. лежат внутри «ломаного» цилиндра радиусом d (рис. 69).

Среднее число столкновений за 1 с равно числу молекул в объеме «ломано­го» цилиндра:

<z>=nV,

где n — концентрация молекул, V = = pd2<v> (<v> —средняя скорость мо­лекулы или путь, пройденный ею за 1с). Таким образом, среднее число столкновений

<z>=npd2<v>.

Расчеты показывают, что при учете дви­жения других молекул

Закон Максвелла для распределения молекул идеального газа по скоростям и энергиям теплового движения - student2.ru

Тогда средняя длина свободного про­бега

Закон Максвелла для распределения молекул идеального газа по скоростям и энергиям теплового движения - student2.ru

т.е. (l) обратно пропорциональна кон­центрации n молекул. С другой стороны, из (42.6) следует, что при постоянной температуре n пропорциональна давлению р.

Следовательно,

Закон Максвелла для распределения молекул идеального газа по скоростям и энергиям теплового движения - student2.ru

Опытное обоснование молекулярно-кинетической теории

Рассмотрим некоторые явления, экспери­ментально подтверждающие основные по­ложения и выводы молекулярно-кинетиче­ской теории.

1. Броуновское движение.Шотландский ботаник Р. Броун (1773—1858), на­блюдая под микроскопом взвесь цветочной пыльцы в воде, обнаружил, что частицы пыльцы оживленно и беспорядочно двига­лись, то вращаясь, то перемещаясь с места на место, подобно пылинкам в сол­нечном луче. Впоследствии оказалось, что подобное сложное зигзагообразное движение характерно для любых частиц малых размеров (»1мкм), взвешенных в газе или жидкости. Интенсивность этого движения, называемого броуновским,по­вышается с ростом температуры среды, с уменьшением вязкости и размеров частиц (независимо от их химической при­роды). Причина броуновского движения долго оставалась неясной. Лишь через 80 лет после обнаружения этого эффекта ему было дано объяснение: броуновское движение взвешенных частиц вызывается ударами молекул среды, в которой части­цы взвешены. Так как молекулы движутся хаотически, то броуновские частицы полу­чают толчки с разных сторон, поэтому и совершают движение столь причудливой формы. Таким образом, броуновское дви­жение является подтверждением выводов молекулярно-кинетической теории о хао­тическом тепловом движении атомов и мо­лекул.

2. Опыт Штерна.Первое эксперимен­тальное определение скоростей молекул выполнено немецким физиком О. Штерном (1888—1970). Его опыты позволили также оценить распределение молекул по скоро­стям. Схема установки Штерна представ­лена на рис. 70. Вдоль оси внутреннего цилиндра с щелью натянута платиновая проволока, покрытая слоем серебра, кото­рая нагревается током при откачанном воздухе. При нагревании серебро испаря­ется. Атомы серебра, вылетая через щель, попадают на внутреннюю поверхность второго цилиндра, давая изображение щели О.

Закон Максвелла для распределения молекул идеального газа по скоростям и энергиям теплового движения - student2.ru

Если прибор привести во вращение вокруг общей оси цилиндров, то атомы серебра осядут не против щели, а сместят­ся от точки О на некоторое расстояние s. Изображение щели получается размы­тым. Исследуя толщину осажденного слоя, можно оценить распределение моле­кул по скоростям, которое соответствует максвелловскому распределению.

Зная радиусы цилиндров, их угловую скорость вращения, а также измеряя s, можно вычислить скорость движения ато­мов серебра при данной температуре про­волоки. Результаты опыта показали, что средняя скорость атомов серебра близка к той, которая следует из максвелловского распределения молекул по скоростям.

3. Опыт Ламмерт.Этот опыт позволя­ет более точно определить закон распреде­ления молекул по скоростям. Схема ваку­умной установки приведена на рис. 71. Молекулярный пучок, сформированный источником, проходя через щель, попадает в приемник. Между источником и прием­ником помещают два диска с прорезями, закрепленных на общей оси. При непод­вижных дисках молекулы достигают при­емника, проходя через прорези в обоих дисках. Если ось привести во вращение, то приемника достигнут только те прошедшие прорезь в первом диске молекулы, которые затрачивают для пробега между дисками время, равное или кратное времени оборо­та диска. Другие же молекулы задержива­ются вторым диском. Меняя угловую ско­рость вращения дисков и измеряя число молекул, попадающих в приемник, можно выявить закон распределения скоростей молекул. Этот опыт также подтвердил справедливость максвелловского распре­деления молекул по скоростям.

4. Опытное определение постоянной Авогадро.Воспользовавшись идеей рас­пределения молекул по высоте (см. форму­лу (45.4)), французский ученый Ж Перрен (1870—1942) экспериментально опре­делил постоянную Авогадро. Исследуя под микроскопом броуновское движение, он убедился, что броуновские частицы рас­пределяются по высоте подобно молекулам газа в поле тяготения. Применив к ним больцмановское распределение, можно за­писать

Закон Максвелла для распределения молекул идеального газа по скоростям и энергиям теплового движения - student2.ru

где m—масса частицы, m1— масса вы­тесненной ею жидкости: m=4/3pr3r, m1 = 4/3pr3r1 (r — радиус частицы, r— плотность частицы, r1 — плотность жидко­сти).

Если n1 и n2 — концентрации частиц на уровнях h1и h2, a k=R/NA, то

Закон Максвелла для распределения молекул идеального газа по скоростям и энергиям теплового движения - student2.ru

Значение Na, получаемое из работ Ж. Перрена, соответствовало значениям, полученным в других опытах, что под­тверждает применимость к броуновским частицам распределения (45.4).

Явления переноса в термодинамически неравновесных системах

В термодинамически неравновесных систе­мах возникают особые необратимые про­цессы, называемые явлениями переноса,в результате которых происходит пространственный перенос энергии, массы, импульса. К явлениям переноса относятся теплопроводность(обусловлена переносом энергии), диффузия(обусловлена перено­сом массы) и внутреннее трение(обуслов­лено переносом импульса). Для простоты ограничимся одномерными явлениями пе­реноса. Систему отсчета будем выбирать так, чтобы ось х была ориентирована в на­правлении переноса.

1. Теплопроводность.Если в одной об­ласти газа средняя кинетическая энергия молекул больше, чем в другой, то с течени­ем времени вследствие постоянных стол­кновений молекул происходит процесс вы­равнивания средних кинетических энергий молекул, т. е., иными словами, выравнива­ние температур.

Перенос энергии в форме теплоты под­чиняется закону Фурье:

Закон Максвелла для распределения молекул идеального газа по скоростям и энергиям теплового движения - student2.ru

где jE — плотность теплового потока —величина, определяемая энергией, перено­симой в форме теплоты в единицу времени через единичную площадку, перпендикулярную оси х, l — теплопроводность,dT/dx — градиент температуры, равный скоро­сти изменения температуры на единицу длины х в направлении нормали к этой площадке. Знак минус показывает, что при теплопроводности энергия переносит­ся в направлении убывания температуры

(поэтому знаки jЕ и dT/dx противополож­ны). Теплопроводность l, численно равна плотности теплового потока при градиенте температуры, равном единице. Можно показать, что

Закон Максвелла для распределения молекул идеального газа по скоростям и энергиям теплового движения - student2.ru

где Сv — удельная теплоемкость газа при постоянном объеме (количество теплоты, необходимое для нагревания 1 кг газа на 1 К при постоянном объеме), r — плот­ность газа, (v) —средняя скорость теп­лового движения молекул, <l> — средняя длина свободного пробега.

2. Диффузия.Явление диффузии за­ключается в том, что происходит самопро­извольное проникновение и перемешива­ние частиц двух соприкасающихся газов, жидкостей и даже твердых тел; диффузия сводится к обмену масс частиц этих тел, возникает и продолжается, пока су­ществует градиент плотности. Во время становления молекулярно-кинетической теории по вопросу диффузии возникли противоречия. Так как молекулы движутся с огромными скоростями, диффузия до­лжна происходить очень быстро. Если же открыть в комнате сосуд с пахучим ве­ществом, то запах распространяется дово­льно медленно. Однако противоречия здесь нет. Молекулы при атмосферном давлении обладают малой длиной свобод­ного пробега и, сталкиваясь с другими молекулами, в основном «стоят» на месте.

Явление диффузии для химически од­нородного газа подчиняется закону Фика:

jm=-Ddp/dx (48.3)

где jт — плотность потока массы —ве­личина, определяемая массой вещества, диффундирующего в единицу времени че­рез единичную площадку, перпендикуляр­ную оси х,D — диффузия (коэффициент диффузии),dr/dx—градиент плотности,

равный скорости изменения плотности на единицу длины х в направлении нормали к этой площадке. Знак минус показывает, что перенос массы происходит в направле­нии убывания плотности (поэтому знаки jт

иdr/dx противоположны). Диффузия D численно равна плотности потока массы при градиенте плотности, равном единице. Согласно кинетической теории газов,

D=1/3 <v> <l>. (48.4)

3. Внутреннее трение (вязкость).Ме­ханизм возникновения внутреннего трения между параллельными слоями газа (жид­кости), движущимися с различными ско­ростями, заключается в том, что из-за хаотического теплового движения проис­ходит обмен молекулами между слоями, в результате чего импульс слоя, движущегося быстрее, уменьшается, движущегося медленнее — увеличивается, что приводит к торможению слоя, движущегося быстрее, и ускорению слоя, движущегося медленнее.

Согласно формуле (31.1), сила внут­реннего трения между двумя слоями газа (жидкости) подчиняется закону Ньютона:

Закон Максвелла для распределения молекул идеального газа по скоростям и энергиям теплового движения - student2.ru

где h — динамическая вязкость (вязкость), dv/dx — градиент скорости, показывающий быстроту изменения скорости в направлении х, перпендикулярном на­правлению движения слоев, S — площадь, на которую действует сила F.

Взаимодействие двух слоев согласно второму закону Ньютона можно рассмат­ривать как процесс, при котором от од­ного слоя к другому в единицу времени передается импульс, по модулю равный действующей силе. Тогда выражение (48.5) можно представить в виде

Закон Максвелла для распределения молекул идеального газа по скоростям и энергиям теплового движения - student2.ru

где jp — плотность потока импульса —ве­личина, определяемая полным импульсом, переносимым в единицу времени в поло­жительном направлении оси х через еди­ничную площадку, перпендикулярную оси

х, dv/dx— градиент скорости. Знак минус указывает, что импульс переносится в на­правлении убывания скорости (поэтому

dv знаки jp и dv/dx противоположны), Динамическая вязкость h численно равна плотности потока импульса при гра­диенте скорости, равном единице; она вы­числяется по формуле

Закон Максвелла для распределения молекул идеального газа по скоростям и энергиям теплового движения - student2.ru

Из сопоставления формул (48.1), (48.3) и (48.6), описывающих явления переноса, следует, что закономерности всех явлений переноса сходны между со­бой. Эти законы были установлены задол­го до того, как они были обоснованы и выведены из молекулярно-кинетической теории, позволившей установить, что внешнее сходство их математических вы­ражений обусловлено общностью лежаще­го в основе явлений теплопроводности, диффузии и внутреннего трения молеку­лярного механизма перемешивания моле­кул в процессе их хаотического движения и столкновений друг с другом.

Рассмотренные законы Фурье, Фика и Ньютона не вскрывают молекулярно-кинетического смысла коэффициентов l, D и h. Выражения для коэффициентов переноса выводятся из кинетической тео­рии. Они записаны без вывода, так как строгое рассмотрение явлений переноса довольно громоздко, а качественное — не имеет смысла. Формулы (48.2), (48.4) и (48.7) связывают коэффициенты перено­са и характеристики теплового движения молекул. Из этих формул вытекают про­стые зависимости между l, D и h:

Закон Максвелла для распределения молекул идеального газа по скоростям и энергиям теплового движения - student2.ru

Используя эти формулы, можно по най­денным из опыта одним величинам опреде­лить другие.

Вакуум и методы его получения. Свойства ультраразреженных газов

Если из сосуда откачивать газ, то по мере понижения давления число столкновений молекул друг с другом уменьшается, что приводит к увеличению их длины свобод­ного пробега. При достаточно большом разрежении столкновения между молеку­лами относительно редки, поэтому основ­ную роль играют столкновения молекул со стенками сосуда. Вакуумом называется состояние газа, при котором средняя дли­на свободного пробега <l> сравнима или больше характерного линейного размера d сосуда, в котором газ находится. В за­висимости от соотношения <l> и d разли­чают низкий(<l><<d), средний(<l>£d), высокий( <l>>d)и сверхвысокий(<l>>> d) вакуум. Газ в состоянии высокого вакуума называется ультраразреженным.

Закон Максвелла для распределения молекул идеального газа по скоростям и энергиям теплового движения - student2.ru

Вопросы создания вакуума имеют большое значение в технике, так как, на­пример, во многих современных электрон­ных приборах используются электронные пучки, формирование которых возможно лишь в условиях вакуума. Для получения различных степеней разрежения применя­ются вакуумные насосы.В настоящее вре­мя применяются вакуумные насосы, по­зволяющие получить предварительное разрежение (форвакуум) до »0,13 Па, а также вакуумные насосы и лаборатор­ные приспособления, позволяющие полу­чить давление до 13,3 мкПа—1,ЗЗпПа (10-7 — 10-14мм рт. ст.).

Принцип работы форвакуумного на­соса представлен на рис. 72. Внутри ци­линдрической полости корпуса враща­ется эксцентрично насаженный цилиндр. Две лопасти 1 и 1', вставленные в разрез цилиндра и раздвигаемые пружиной 2, разделяют пространство между цилинд­ром и стенкой полости на две части. Газ из откачиваемого сосуда поступает в область

3. по мере поворачивания цилиндра ло­пасть 1 отходит, пространство 3 увеличи­вается и газ засасывается через трубку

4. При дальнейшем вращении лопасть 1' отключает пространство 3 от трубки

4 и начинает вытеснять газ через клапан

5 наружу. Весь процесс непрерывно по­вторяется.

Для получения высокого вакуума при­меняются диффузионные насосы(рабочее вещество— ртуть или масло), которые не способны откачивать газ из сосудов на­чиная с атмосферного давления, но спо­собны создавать добавочную разность давлений, поэтому их употребляют вместе с форвакуумными насосами. Рассмотрим схему действия диффузионного насоса (рис. 73). В колбе ртуть нагревается, пары ртути, поднимаясь по трубке 1, вырываются из сопла 2 с большой скоростью, увле­кая за собой молекулы газа из откачивае­мого сосуда (в нем создан предваритель­ный вакуум).

Эти пары, попадая затем в «водяную рубашку», конденсируются и стекают обратно в резервуар, а захва­ченный газ выходит в пространство (через трубку 3), в котором уже создан форваку­ум. Если применять многоступенчатые на­сосы (несколько сопл расположены по­следовательно), то реально при хороших уплотнениях можно с помощью них полу­чить разрежение до 10-7 мм рт. ст.

Для дальнейшего понижения давления применяются так называемые «ловушки». Между диффузионным насосом и откачи­ваемым объектом располагают специально изогнутое колено (1 или 2) соединитель­ной трубки (ловушку), которую охлажда­ют жидким азотом (рис.74). При такой температуре пары ртути (масла) вымора­живаются и давление в откачиваемом со­суде понижается приблизительно на 1 — 2 порядка. Описанные ловушки называют охлаждаемыми;можно применять также неохлаждаемые ловушки.Специальное рабочее вещество (например, алюмогель) помещают в один из отростков соедини­тельной трубки вблизи откачиваемого объекта, которое поддерживается при тем­пературе 300 °С.

При достижении высо­кого вакуума алюмогель охлаждается до комнатной температуры, при которой он начинает поглощать имеющиеся в системе пары. Преимущество этих ловушек состо­ит в том, что с их помощью в откачивае­мых объектах можно поддерживать высо­кий вакуум уже после непосредственной откачки в течение даже нескольких суток.

Остановимся на некоторых свойствах ультраразреженных газов. Так как в со­стоянии ультраразрежения молекулы практически друг с другом не сталкивают­ся, то газ в этом состоянии не обладает внутренним трением. Отсутствие соударе­ний между молекулами разреженного газа отражается также на механизме теплопро­водности. Если при обычных давлениях перенос энергии молекулами производится «эстафетой», то при ультраразрежении каждая молекула сама должна перенести энергию от одной стенки сосуда к другой. Явление уменьшения теплопроводности вакуума при понижении давления исполь­зуется на практике для создания тепловой изоляции. Например, для уменьшения теп­лообмена между телом и окружающей средой тело помещают в сосуд Дьюара, имеющий двойные стенки, между которы­ми находится разреженный воздух, тепло­проводность которого очень мала.

Рассмотрим два сосуда 1 и 2, под­держиваемых соответственно при температурах Т1и T2(рис. 75) и соединенных между собой трубкой.

Закон Максвелла для распределения молекул идеального газа по скоростям и энергиям теплового движения - student2.ru

Если длина сво­бодного пробега молекул гораздо меньше диаметра соединительной трубки (<l><<d), то стационарное состояние газа ха­рактеризуется равенством давлений в обо­их сосудах (р12). Стационарное же состояние ультраразреженного газа (<l>>>d), находящегося в двух сосудах, соединенных трубкой, возможно лишь в том случае, когда встречные потоки частиц, перемещающихся из одного со­суда в другой, одинаковы, т. е.

n1<v1>=n2<v2>, (49.1) где n1и n2 — концентрации молекул в обо­их сосудах, <v1> и <v2> —средние скорости молекул. Учитывая, что n= p/(kT) и <v>=Ö(8RT/(pM)), из условия (49.1) получаем

Закон Максвелла для распределения молекул идеального газа по скоростям и энергиям теплового движения - student2.ru

т. е. в условиях высокого вакуума вырав­нивания давлений не происходит. Если в откачанный стеклянный баллон (рис. 76) на пружину 1 насадить слюдяной листо­чек 2, одна сторона которого зачернена, и освещать его, то возникнет разность температур между светлой и зачерненной поверхностями листочка.

Основы термодинамики

§ 50. Число степеней свободы молекулы. Закон равномерного распределения энергии по степеням свободы молекул

Важной характеристикой термодинамиче­ской системы является ее внутренняя энергияU — энергия хаотического (тепло­вого) движения микрочастиц системы (молекул, атомов, электронов, ядер и т. д.) и энергия взаимодействия этих частиц. Из этого определения следует, что к внутрен­ней энергии не относятся кинетическая энергия движения системы как целого и потенциальная энергия системы во внешних полях.

Внутренняя энергия — однозначная функция термодинамического состояния системы, т. е. в каждом состоянии система обладает вполне определенной внутренней энергией (она не зависит от того, как система пришла в данное состояние). Это

означает, что при переходе системы из одного состояния в другое изменение внут­ренней энергии определяется только раз­ностью значений внутренней энергии этих состояний и не зависит от пути перехода. В § 1 было введено понятие числа степеней свободы — числа независимых переменных (координат), полностью опре­деляющих положение системы в простран­стве. В ряде задач молекулу одноатомного газа (рис. 77, а) рассматривают как мате­риальную точку, которой приписывают три

Закон Максвелла для распределения молекул идеального газа по скоростям и энергиям теплового движения - student2.ru

степени свободы поступательного движе­ния. При этом энергию вращательного движения можно не учитывать (r—>0, J= mr2®0, Tвр =Jw2/2®0).

В классической механике молекула двухатомного газа в первом приближении рассматривается как совокупность двух материальных точек, жестко связанных недеформируемой связью (рис. 77,б). Эта система кроме трех степеней свободы по­ступательного движения имеет еще две степени свободы вращательного движе­ния. Вращение вокруг третьей оси (оси, проходящей через оба атома) лишено смысла. Таким образом, двухатомный газ обладает пятью степенями свободы (i=5). Трехатомная (рис. 77,0) и многоатомная нелинейные молекулы имеют шесть степе­ней свободы: три поступательных и три вращательных. Естественно, что жесткой связи между атомами не существует. По­этому для реальных молекул необходимо учитывать также степени свободы колеба­тельного движения.

Независимо от общего числа степеней свободы молекул три степени свободы всегда поступательные. Ни одна из по­ступательных степеней свободы не имеет преимущества перед другими, поэтому на каждую из них приходится в среднем оди­наковая энергия, равная 1/3 значения <e0)в (43.8):

Закон Максвелла для распределения молекул идеального газа по скоростям и энергиям теплового движения - student2.ru

В классической статистической физике выводится закон Больцмана о равномер­ном распределении энергии по степеням свободы молекул:для статистической системы, находящейся в состоянии термо­динамического равновесия, на каждую по­ступательную и вращательную степени свободы приходится в среднем кинетиче­ская энергия, равная kT/2, а на каждую колебательную степень свободы — в сред­нем энергия, равная kT. Колебательная степень «обладает» вдвое большей энер­гией потому, что на нее приходится не только кинетическая энергия (как в слу­чае поступательного и вращательного дви­жений), но и потенциальная, причем сред­ние значения кинетической и потенциальной энергий одинаковы. Таким образом, средняя энергия молекулы

Закон Максвелла для распределения молекул идеального газа по скоростям и энергиям теплового движения - student2.ru

где i — сумма числа поступатель­ных, числа вращательных и удвоенного числа колебательных степеней свободы молекулы:

i =iпост+iвращ+2iколеб.

В классической теории рассматривают молекулы с жесткой связью между атома­ми; для них i совпадает с числом степеней свободы молекулы.

Так как в идеальном газе взаимная потенциальная энергия молекул равна ну­лю (молекулы между собой не взаимодей­ствуют), то внутренняя энергия, отнесен­ная к одному молю газа, будет равна сумме кинетических энергий NA молекул:

Закон Максвелла для распределения молекул идеального газа по скоростям и энергиям теплового движения - student2.ru

Внутренняя энергия для произвольной массы т газа

Закон Максвелла для распределения молекул идеального газа по скоростям и энергиям теплового движения - student2.ru

где М — молярная масса, v — количе­ство вещества.

Первое начало термодинамики

Рассмотрим термодинамическую систему, для которой механическая энергия не из­меняется, а изменяется лишь ее внутрен­няя энергия. Внутренняя энергия системы может изменяться в результате различных процессов, например совершения над системой работы и сообщения ей теплоты. Так, вдвигая поршень в цилиндр, в кото­ром находится газ, мы сжимаем этот газ, в результате чего его температура повы­шается, т. е. тем самым изменяется (уве­личивается) внутренняя энергия газа. С другой стороны, температуру газа и его внутреннюю энергию можно повысить за счет сообщения ему некоторого количест­ва теплоты — энергии, переданной систе­ме внешними телами путем теплообмена (процесс обмена внутренними энергиями при контакте тел с разными температу­рами) .Таким образом, можно говорить о двух формах передачи энергии от одних тел к другим: работе и теплоте. Энергия меха­нического движения может превращаться в энергию теплового движения и наоборот. При этих превращениях соблюдается за­кон сохранения и превращения энергии; применительно к термодинамическим про­цессам этим законом и является первое начало термодинамики, установленное в результате обобщения многовековых опытных данных.

Допустим, что некоторая система (газ, заключенный в цилиндр под поршнем), обладая внутренней энергией U1, получи­ла некоторое количество теплоты Q и, перейдя в новое состояние, характеризую­щееся внутренней энергией U2, совершила работу А над внешней средой, т. е. против внешних сил. Количество теплоты считает­ся положительным, когда оно подводится к системе, а работа — положительной, когда система совершает ее против внеш­них сил. Опыт показывает, что в соответ­ствии с законом сохранения энергии при любом способе перехода системы из перво­го состояния во второе изменение внутрен­ней энергии DU=U2-U1будет одинако­вым и равным разности между количест­вом теплоты Q, полученным системой, и работой А, совершенной системой про­тив внешних сил:

DU=Q-A,

или

Q=DU+A. (51.1)

Уравнение (51.1) выражает первое начало термодинамики:теплота, сообщаемая системе, расходуется на изменение ее внутренней энергии и на совершение ею работы против внешних сил.

Выражение (51.1) в дифференциаль­ной форме будет иметь вид

dQ=dU+dA, или в более корректной форме

dQ=dU+dA, (51.2)

где dU — бесконечно малое изменение внутренней энергии системы, dА — эле­ментарная работа, dQ — бесконечно малое количество теплоты. В этом выраже­нии dU является полным дифференциа­лом, а dA и dQ таковыми не являются. В дальнейшем будем использовать запись первого начала термодинамики в форме (51.2).

Из формулы (51.1) следует, что в СИ количество теплоты выражается в тех же единицах, что работа и энергия, т. е. в джоулях (Дж).

Если система периодически возвраща­ется в первоначальное состояние, то изме­нение ее внутренней энергии DU=0. Тогда, согласно первому началу термодинамики,

A=Q,

Наши рекомендации