Типовые конструкции противооткатных устройств
Рассмотрение требований к ПОУ позволяет заключить, что для их реализации необходимо в составе ПОУ иметь:
— преобразователь энергии — регулятор отката, называемый в практике тормозом отката;
— аккумулятор энергии — накатник;
— преобразователь энергии — регулятор наката, называемый в практике тормозом наката.
В зависимости от степени совмещения этих трех элементов различают:
- нераздельные ПОУ, в которых все три элемента конструктивно и функционально объединены;
- раздельные ПОУ, в противном случае.
Современные тормоза и накатники, как правило, используют эффект поступательно перемещающегося (по направлению линии откат—накат) поршня, взаимодействующего с рабочим телом. Поэтому наружные очертания ПОУ имеют форму цилиндров.
В современных артиллерийских орудиях наиболее часто встречаются
схемы противооткатных устройств со следующей конструктивной компоновкой:
1) тормоз отката и тормоз наката конструктивно объединены в
один агрегат, накатник является отдельным агрегатом;
2) тормоз отката, тормоз наката и накатник конструктивно
объединены в один агрегат.
При этом, может быть еще и дополнительный тормоз наката, работающий только на последнем участке и представляющий собою отдельный агрегат;
3) тормоз отката, тормоз наката и накатник являются отдельными
агрегатами.
Выбор той или иной схемы противооткатных устройств, так же как и выбор конструктивного типа тормоза или накатника, осуществляется в зависимости от типа орудия, от боевых, эксплуатационных и производственно-экономических требований, предъявляемых, к орудию, а также от субъективных факторов, связанных с накопленным опытом проектирования устройств и механзимов определенного типа.
Накатники артиллерийских орудий
Основным назначением накатника является возвращение ствола после выстрела в исходное положение и удержание его в этом положении при всех углах возвышения не только в неподвижном орудии, но и при движении его.
Во время отката накатник аккумулирует часть механической энергии откатных частей, участвуя в торможении. Затем большая часть аккумулированной энергии, ставшей потенциальной энергией сжатого упругого тела, вновь возвращается откатным частям в виде кинетической энергии движения их в обратном направлении, т. е. в накат.
В качестве упругого тела в накатниках применяют либо винтовые цилиндрические пружины, либо сжатый воздух (или азот). В первом случае накатники именуют пружинными, во втором — пневматическими. Ствол удерживается в исходном положении при всех углах возвышения и при наличии переносных ускорений от движения орудия в результате предварительного поджатия пружины или газа в накатниках. Пружинные накатники имеют несколько конструктивных схем.
На рисунке 1.2 изображена схема пружинного накатника с расположением цилиндрических винтовых пружин 1 в виде одной колонки, надетой на ствол 2. Одним концом колонка пружин упирается в дно 5 неподвижной люльки 3, а другим — в кольцевую обойму 4 ствола. Во время отката ствола пружина сжимается между кольцевой обоймой и дном люльки. Упругое усилие пружины возрастает по линейному закону, зависящему от выбранной жесткости пружины.
В накате пружина разжимается и возвращает ствол в исходное положение.
Преимуществом такой схемы является компактность конструкции, отсутствие на откатных частях масс, эксцентрично расположенных относительно оси канала ствола.
Рисунок 1.2 - Пружинный накатник на стволе
Недостаток — сравнительно большие габариты пружины и возможность ее интенсивного нагрева от ствола при длительной стрельбе.
Эта схема получила распространение в автоматической артиллерии малых и средних калибров.
Преимуществом пружинных накатников является их простота устройства и обслуживания, малая чувствительность к наружным повреждениям от пуль и осколков, независимость действия от внешних условий.
Недостатками пружинных накатников являются большая масса и размеры, особенно у орудий крупных калибров. С увеличением размеров пружин усложняется технология и стоимость их изготовления.
Поэтому сферой применения пружинных накатников в настоящее время, в основном, является автоматическая артиллерия малых и средних калибров.
Для более крупных орудий чаще применяют пневматические накатники, в которых в качестве упругого тела используется сжатый азот или сжатый воздух.
Для того чтобы обеспечить запирание газа, в накатнике всегда имеется некоторое количество жидкости.
Примеры пневматического накатника приведены на рисунке 5.
Основное различие представленных схем с конструктивной точки зрения заключается в том, что в первой схеме при откате шток вдвигается внутрь цилиндра, а во второй — выдвигается наружу.
В схеме на рисунке 5а цилиндр накатника 7 скреплен с неподвижной люлькой, а шток 1 является частью откатных частей орудия. Герметичность подвижного соединения цилиндра и штока обеспечивается уплотнением, со
стоящим из двух, поставленных навстречу один другому, воротников 2, пространство между которыми заполнено жидкостью, находящейся под давлением, повышенным по сравнению с давлением газа внутри цилиндра. Повышенное давление в уплотнении обеспечивается мультипликатором давления, состоящим из цилиндра 4, внутри которого помещен поршень 6, снабженный уплотнением 5. Шток 3 поршня через свое уплотнение 2 выпущен наружу.
Полость 1 мультипликатора (рисунок 1.4), где находится шток 2, заполнена уплотняющей жидкостью и соединена с полостью уплотнения штока накатника. Полость мультипликатора по другую сторону поршня 3 присоединена непосредственно к цилиндру накатника и наполнена тем же газом притом же давлении, что и накатник. Поршень со штоком мультипликатора установятся в состояние равновесия только в том случае, если давление жидкости, поступающей в полость уплотнения штока накатника, будет выше, чем давление газа, так как рабочая площадь давления жидкости, действующего на поршень мультипликатора, меньше, чем рабочая площадь давления газа, заставляющего поршень мультипликатора перемещаться и поджимать жидкость.
При движении вместе с откатными частями шток входит внутрь цилиндра, объем, занимаемый газом, уменьшается, давление газа возрастает по политропическому закону от величины, обеспечивающей, усилие предварительного поджатия накатника, до максимальной величины в конце отката. Поскольку процесс сжатия протекает достаточно быстро, газ нагревается, так как его возросшая внутренняя энергия не успевает рассеяться в виде тепла. После окончания отката, под воздействием давления газа на дно подвижного цилиндра, откатные части возвращаются в исходное положение, давление газа падает также по политропическому закону, но уже в обратном направлении, газ в цилиндре охлаждается. Следует отметить, что «прямая» и «обратная» политропические зависимости не совпадают, так как часть энергии все же теряется, главным образом, в виде тепла.
Начальное усилие пневматического накатника, так же как и пружинного, выбирается из условия удержания откатных частей в исходном положении при всех углах возвышения и при наличии переносных ускорений от движения орудия. Начальное давление газа, обеспечивающее это усилие, определяется обычно из возможности обеспечения сборки и заполнения накатника в условиях ремонтной мастерской либо от компрессора, либо от баллона со сжатым газом. Обычно его величина находится в пределах от 2,5 МН/м2 до 7,5 МН/м2.
Соотношение между выбранной величиной начального давления и требуемым начальным усилием определяет величину рабочей площади, а, следовательно, и поперечных габаритов рабочего цилиндра накатника. Общие габариты определяются длиной отката и объемом газа, выбираемыми с учетом необходимой степени сжатия его при откате.
В схеме, представленной на рисунке 1.3 а, с откатными частями соединен шток 1, а цилиндр 2, заполненный газом, располагается в неподвижной люльке. Для того чтобы систему уплотнений вывести на неподвижную часть накатника, длина поршня 3 должна несколько превышать длину отката. Для более экономного использования пространства поршень выполняют в виде полого цилиндра, заполненного сжатым газом, сообщающимся с рабочим цилиндром, где также находится сжатый газ.
Рисунок 1.3 - Пневматический накатник
В схеме, представленной на рисунке 1.3 б, с откатными частями соединен шток 1, а цилиндр 2, заполненный газом, располагается в неподвижной люльке. Для того чтобы систему уплотнений вывести на неподвижную часть накатника, длина поршня 3 должна несколько превышать длину отката. Для более экономного использования пространства поршень выполняют в виде полого цилиндра, заполненного сжатым газом, сообщающимся с рабочим цилиндром, где также находится сжатый газ.
Недостатком этой схемы, по сравнению с предыдущей, является большее количество уплотнений. Однако то обстоятельство, что эти уплотнения и мультипликатор, обеспечивающий повышенное давление жидкости в уплот
нениях, расположены на неподвижной части орудия, является преимуществом. При этом обеспечивается надежная работа уплотнений.
Рисунок 1.4 - Мультипликатор
Более надежными, с точки зрения обеспечения уплотнения, являются пневматические накатники, которые кроме объема воздуха содержат еще некоторый объем жидкости.
Рабочий цилиндр пневматического накатника полностью заполнен жидкостью, которая запирается уплотнениями штока. Сжатый газ находится в другом резервуаре, также частично заполненном жидкостью. Газовый резервуар и рабочий цилиндр накатника соединены между собою таким образом, что при всех возможных углах возвышения по каналу сообщения может поступать только жидкость, а сжатый газ не может попадать в рабочую полость. При этом используется свойство газа находиться в верхней части резервуара. На рисунке 1.3 представлены две схемы пневматических накатников. В первой из схем с откатными частями связан шток, цилиндры неподвижны. Во
второй схеме шток закреплен на неподвижной люльке, в откат вместе со стволом движутся цилиндры. Отверстия а и б расположены таким образом, чтобы газ не мог попасть во внутренний рабочий цилиндр.
Применение пневматических накатников дает ряд преимуществ по сравнению с пружинными, а именно, уменьшаются масса конструкции и габариты.
В то же время пневматические накатники имеют следующие недостатки:
1) зависимость работы накатника от наружной температуры. С повышением температуры давление, а, следовательно, и усилие накатника, возрастает; с понижением температуры — падает;
2) усложнение эксплуатации. Необходимость наблюдения за давлением газа, за работой уплотнительных устройств, за возможной коррозией;
3) повышенная чувствительность к повреждениям пулями, осколками снарядов и мин.
Основные характеристики накатников некоторых артиллерийских орудий приведены в таблице 1.1.
Таблица 1.1
Характеристики накатников