Сила давления жидкости на криволинейные поверхности
Определение давления жидкости на цилиндрическую поверхность представляет собой частный случай общей задачи о давлении жидкости на криволинейные поверхности. Чтобы получить общее решение, возьмём сосуд произвольной формы и выделим его на стенке какую-либо произвольную поверхность S, ограниченную контуром AMBN. Будем искать составляющие полного давления на эту поверхность по координатным осям, выбрав, например, начало координат на свободной поверхности жидкости и расположив оси так, как это показано на чертеже. При этом ограничимся определением лишь одной составляющей Rx. Параллельной оси x, поскольку остальные составляющие можно найти аналогичным образом. Найдём проекцию поверхности S на некоторую плоскость NN, нормальную к оси x и расположенную между этой поверхностью и координатной плоскостью ZOY. Отметим, что указанную плоскость проекции NN, как и направление самой оси x, можно выбирать по-разному. На жидкость, заключённую в объёме между поверхностью S, плоскостью NN и поверхностью проектирующего цилиндра, образующие которого параллельны оси x, действуют следующие силы: тяжести (вес) Gx выделенного объёма жидкости; давления жидкости RFx на проекцию поверхности S на плоскость NN; давления на боковую поверхность указанного объема (их проекция на ось x равна нулю); реакции R со стороны поверхности S, равная по значению, но обратная по направлению искомой силе давления жидкости. Проектируя эти силы на ось x, имеем:
(1.64) |
откуда для проекции силы реакции получаем
(1.65) |
Аналогично находят выражения для проекции силы реакции и на другие координатные оси:
(1.66) | |
(1.67) |
где ax, ay, az - углы между направлением линии действия силы тяжести и осями координат x, y, z.
Таким образом, получаем следующую общую теорему о давлении жидкости на криволинейную поверхность: проекция силы давления жидкости на криволинейную поверхность S на заданную ось x равна сумме проекций на эту ось веса жидкости, находящейся между поверхностью S, поверхностью проектирующего цилиндра и плоскостью проекций, нормальной к оси x, и силы давления жидкости на проекцию поверхности S на ту же плоскость проекции. Силу гидростатического давления на криволинейную поверхность определяют по формуле:
, | (1.68) |
где Px, Py, Pz - составляющие силы избыточного давления по соответствующим координатным осям. В случае цилиндрической криволинейной поверхности:
, | (1.69) |
где PxPx и Pz - горизонтальная и вертикальная составляющие силы P. . Горизонтальная составляющая избыточного давленияPx Px равна силе давления на вертикальную проекцию криволинейной поверхности:
, | (1.70) |
где pm pm- манометрическое давление на поверхности жидкости; hc hc - глубина погружения центра тяжести вертикальной проекции криволинейной поверхности; w wz - площадь вертикальной проекции криволинейной поверхности. Если манометрическое давление на свободной поверхности жидкости равно нулю (p0 = pат),(p0 = pат), то
. | (1.71) |
Вертикальная составляющая Pz Pzравнаравна весу жидкости в объёме тела давления. Тело давления расположено между вертикальными плоскостями, проходящими через крайние образующие цилиндрической поверхности, самой цилиндрической поверхностью и свободной поверхностью жидкости или её продолжением (рисунокрисунок 1.9)
Рисунок 1.9 - - Определение сил давления на криволинейную поверхность |
Если давление на свободной поверхности жидкости p0 ¹ pат, то тело давления ограничивается сверху пьезометрической плоскостью, удалённой от свободной поверхности жидкости на расстояние Направление силы P определяется тангенсом угла j:
. | (1.72) |
Если криволинейная поверхность не цилиндрическая, то горизонтальную составляющую Py определяют аналогично Px..
Примеры и задачи
Пример 1.1.
Плотность и объем первой жидкости равны 1000 кг/м3 и 6 см3. Плотность и объем второй жидкости 800 кг/м3 и 4 см3. Определить плотность смеси этих жидкостей.
Решение:
По определению плотности масса первой и второй жидкости равны:
Плотность смеси находим по определению:
Ответ: плотность смеси равна 920 кг/м3
Пример 1.2.
Проводятся гидравлические испытания водопровода длиной 5 км и диаметром 2 м. Необходимо повысить давление в нём до 4 МПа. Какой объём воды необходимо дополнительно закачать в водопровод? Коэффициенты объёмного сжатия принять равными 5 10-10 1/Па.
Решение:
Из определения коэффициента объёмного сжатия жидкости следует, что изменение объёма воды равно . Объём жидкости в трубе – это объём цилиндра диаметром D и длиной ℓ. Поэтому
Ответ: необходимо закачать 31,4 м3 воды.
Пример 1.3.
Определить плотность воды при температуре 44 Сº, если при температуре 4 Сº плотность воды 1000 кг/м3. Коэффициент температурного расширения воды принять равными 4,8 10-4 1/Сº.
Решение:
Обозначим величины при температуре 4 Сº индексом 1, а при температуре плотность 44 Сº индексом 2. Тогда плотность жидкости при температуре 44 Сº равна:
.
Изменение объёма воды при изменении температуры найдём из определения коэффициента температурного расширения: .
Тогда плотность воды будет равна:
.
Ответ: плотность воды при температуре 44 Сº равна 981 кг/м3.
Пример 1.4.
В баке компрессора воздух находится при давлении 0,2 МПа и температуре 20 Сº. В баке образовалось отверстие, через которое происходит истечение воздуха в атмосферу (pат = 0,1 МПа). Определить температуру вытекающего воздуха.
Указание: процесс истечения считать адиабатическим (k = 1,5).
Решение:
Обозначим величины в баке компрессора индексом 1, а истекающего воздуха индексом 2. Запишем уравнения состояния и уравнение процесса:
Из этих уравнений исключаем плотности:
Откуда:
.
Тогда температура воздуха при истечении равна
.
Или
Ответ: температура истекающего воздуха равна - 40 .
Пример 1.5.
Вертикальная стенка длиной ℓ=3 м (в направлении, перпендикулярном плоскости чертежа), шириной b = 0,7 м и высотой Н0 = 2,5 м разделяет бассейн с водой на две части. В левой части поддерживается уровень воды H1 =2 м, в правой - H2 = 0,8 м.
Рисунок 1.10 - - Схема к примеру 1.5 |
Найти величину опрокидывающего момента, действующего на стенку, а также определить, будет ли стенка устойчива против опрокидывания, если плотность материала стенки ρ = 2500 кг/м3.
Решение:
Найдем силу давления воды на стенку слева. Так как на поверхности давление атмосферное, то пьезометрическая плоскость совпадает с поверхностью жидкости,
.
Стенка вертикальная, поэтому расстояние от линии уреза до центра тяжести равно глубине погружения центра тяжести ℓc1 = hc1 = H1/2. Момент инерции поверхности относительно линии, параллельной линии уреза и проходящей через центр тяжести равен .
Тогда координата центра давления:
.
Точно также справа
kH,
M.
Опрокидывающий момент, то есть момент сил давления жидкости относительно точки О (см. рисунок 2.9), равен:
Устойчивость против опрокидывания сообщает стенке момент ее силы тяжести относительно точки О, равный:
Так как Mтяж > Mопр, то стенка устойчива.
Пример 1.6.
Рисунок 1.11 - Схема к примеру 2.6 |
Определить давление жидкости на плоские боковые стенки цилиндрического резервуара, если его диаметр D=3 м (рисунок 2.10).
Решение:
Для этого сначала найдем силу давления Р (для избыточного давления).
Давление в центре тяжести площади стенки p = r g h = 9,81×1000×15 = 1,47×104, откуда:
P = pc w = pc p×d2/4 = 1,47×104×p×d2/4 = 1,03×105 Н.
Пример 1.7.
Рисунок 1.12 - - Схема к задаче 1.7 |
Определить усилие U, необходимое для того, чтобы поднять клапан (рисунок 2.11), если диаметр головки D = 0,5 м, диаметр цилиндрического ствола d = 0,3 м, высота головки а = 0,25 м и глубина погружения клапана h=1,25 м. Вес клапана G=29,4 H.
Решение. Необходимое усилие U находим из условия предельного равновесия
,
где и - силы давления жидкости на верхнюю и нижнюю (кольцевую)
поверхности головки клапана. Вычисляем последовательно:
Искомое усилие Н.
Пример 1.8.
Рисунок 1.13 - К задаче 1.8 |
Определить силу R давления жидкости на горизонтальное дно резервуара (внутреннее давление снизу вверх) в соответствии с рисуно 2.12, если Па; d=2 м.
Решение:
Искомая сила R = p ω, где p - гидростатическое давление в центре тяжести площади ω (в точке М).
По формуле:
Па, откуда
Задача 1.1
Стальная труба с внутренним диаметром D = 600 мм. работает под давлением р = 3 МПа. Найти : а) необходимую толщину стенок трубы , если допустимое напряжение для стали МПа ; б) максимально допустимое давление при толщине стенки трубы мм.
Ответ: а) 6 мм.; б) 2 МПа (20,4 кгс/см2).
Задача 1.2
Найти силу давления воды на дно сосуда диаметром D = 1 м , если глубина H=0,7м, вес поршня G = 300 Н, d=0,5 м.
Ответ: 6,59 кН.
Задача 1.3
Наклонный прямоугольный щит плотины шарнирно закреплен на оси О. При каком уровне воды Н щит опрокинется, если угол наклона щита a=60°, а расстояние от его нижней кромки до оси шарнира d=1,3 м. Вес щита не учитывать.
Ответ: Н=3,38м.
Задача 1.4
Определить силу давления жидкости на торцевую плоскую стенку горизонтальной цилиндрической цистерны диаметром d=2,4 м, заполненной бензином плотностью r=760кг/м3, если уровень бензина в горловине находится на расстоянии H=2,7 м от дна. Цистерна герметически закрыта и избыточное давление на поверхности жидкости составляет 40 кПа. Найти также положение центра тяжести стенки..
Ответ: P=231 кН, Dl= 0,052 м.
Задача 1.5
Резервуар заполнен нефтью плотностью ρ=850 кг/м3 До высоты H=4 м . Избыточное давление на поверхности pн= 14,7 кПа. Определить реакции шарнира A и стяжного болта В крышки люка, если диаметр патрубка d=1м и его центр расположен на расстояниях H=1,5 м от дна резервуара, а=0,7 м и b=0,8 м. Вес крышки не учитывать.
Ответ: ra = 14.7 кН, rB = 13,4 кН.