Мы – это квантовые флуктуации

Следующим шагом было перенесение проекта на спутник, чтобы полностью исключить любые помехи от микроволнового излучения в нашей атмосфере. На этом этапе Смут взял в руки бразды правления (и поиск финансирования) по нашему проекту, а я постепенно от него отошел. Было понятно, что ему моя помощь не нужна, а бюрократия NASA мне надоела. Это подтвердилось на практике: изменения в нашей измерительной аппаратуре были минимальными, зато сопротивление американского правительственного аппарата оказалось значительным. Джордж продолжил работу, но прошло еще долгих 14 лет (1978−1992), пока ему удалось вывести наши измерительные инструменты в космос и приступить к измерениям.

Для столь длительной затяжки с экспериментом не было никаких фундаментальных причин (вполне можно было уложиться для подготовки космической части проекта и в 4 года), однако работа с правительственной машиной была обставлена огромным количеством бюрократических препон, которые часто совсем не учитывали интересов науки. Каждые несколько лет NASA требовало от Смута модифицирования аппаратуры, чтобы она подходила к другому типу космического корабля. Сначала ее хотели отправить в космос на беспилотной ракете, затем NASA решило, что программу космических челноков необходимо «нагрузить» максимальным научным содержанием (ради оправдания роста расходов на нее!), что серьезно задержало проект. В дополнение ко всему, использование аппаратуры в пилотируемых космических станциях подразумевало строгое тестирование, чтобы она не создала какой-то угрозы жизни астронавтов. После этого NASA еще раз передумало и решило запустить аппаратуру на непилотируемом корабле, но ее предстояло переделать так, чтобы задействовать в совершенно другом эксперименте по измерению спектра излучения (то есть плотности его мощности на разных частотах).

Результаты, полученные Смутом и его новой командой в космосе, без помех атмосферы, были обеспечены в 30 раз бо льшей чувствительностью измерений по сравнению с теми, которые мы выполняли с помощью U-2. Впервые была обнаружена естественная анизотропия, что немного не согласовывалось с космологическим принципом. Сгустки материи и возмущения, которые они нашли, были как раз тем, что считалось следами Большого взрыва. Эта теория и предполагала, что Вселенная началась как весьма однородная, но не до конца. Квантовые флуктуации, определяющиеся принципом неопределенности Гейзенберга, могли создать небольшие сгустки материи, которые под влиянием локальных сил гравитации разрастались, формируя структуры, а они в конечном счете превращались в огромные кластеры и галактики.

Это было очень любопытно и даже удивительно, что космология – царство сверхбольших размеров – стала более понятна через законы квантовой физики, прежде отслеживаемые только в микромире. Стивен Хокинг назвал это открытие «самым волнующим событием в физике», которое он испытывал за всю свою жизнь. Обнаруженное космическое микроволновое излучение, подтвердившее теорию Большого взрыва, стало самым глубоким источником информации о природе Вселенной за первые полмиллиона лет после взрыва. За это исследование Смут получил Нобелевскую премию.

Пока мы с вами подошли не к началу времени, а только к отметке в полмиллиона лет после него. Для человека «полмиллиона лет» звучит как невероятно огромное число, но если сравнить с 14 миллиардами лет, прошедшими с тех пор, получается, что нам удалось сфотографировать Вселенную такой, какой бывает ребенок нескольких часов от роду. И что важно, это была не теория, а данные реальных наблюдений.

Позднее результаты измерений были улучшены благодаря спутнику WMAP. Новые результаты позволили увидеть, что даже через полмиллиона лет Вселенная не была однородной: в ней начали образовываться сгустки материи.

Вселенная Тёрстона

Судьба удостоила меня чести быть двоюродным братом одного из величайших математиков современности – Билла Тёрстона[140]. Мы жили по соседству в кампусе университета Беркли и часто говорили о нашей научной карьере (еще докторантом он был убежден, что никогда не найдет для себя хорошую работу), о математике и физике. Билл очень увлекся моими рассказами о том, что мы знаем о Вселенной. Он интересовался, рассматривает ли кто-либо всерьез концепцию «мультисвязанной» Вселенной. Имел ли он в виду кротовые норы, посредством которых потенциально могли быть соединены разные части Вселенной? Нет, в голове у него была гораздо более простая и элегантная идея.

В конечном счете Билл стал знаменит благодаря достижениям в топологии и сложных геометрических многообразиях, которые выходят за пределы нашего воображения. Он говорил, что овладел навыком думать четырехмерно. Немногие верили, пока он не сформулировал множество блестящих теорем, которые открыл, по его словам, наблюдая за поверхностями в четырехмерном пространстве, существовавшем в его голове. Странно, но оказывается, что математические проблемы в трех и менее измерениях относительно просты. Пятимерные модели тоже решаемы. Самыми сложными считаются модели четырехмерные. За свои работы по четырехмерному многообразию Билл, еще не достигший 40 лет, получил премию Филдса, которая для математиков приравнивается к Нобелевской.

В топологии вы можете продвинуться в пространстве, а потом обнаружить, что вернулись к точке старта. Такой результат обычен для искривленного пространства (как поверхность Земли). Но он может иметь место и в неискривленном пространстве. Космологи называют его «плоским», хотя оно и существует в трех измерениях. Подразумевается, что в очень больших масштабах свет распространяется только по прямой, а не изогнутой линии; в таком пространстве действуют законы обычной эвклидовой геометрии; сумма всех углов треугольника при всех условиях составляет 180°.

Вопрос Билла был следующим: реальная Вселенная проста, или это мультисвязанная структура? Он хотел понять, могут ли измерения в космологии исключить последний вариант. Я не могу представить такие измерения. А могут ли измерения подтвердить его предположения? Над этим следует серьезно задуматься.

Думаю, что концепция Вселенной Тёрстона (как я ее называю) – замечательная новая идея. Эта Вселенная мультисвязана, например с помощью кротовых нор, однако в ней отсутствуют серьезные пространственные искажения. И эту модель можно проверить. Я не считаю ее даже приблизительно настолько же безумной, как 11-мерные пространственно-временные континуумы, применяемые в некоторых теориях струн.

Я несколько недель пытался доказать, что модель Тёрстона ошибочна. И старался отыскать аргументы ее правильности. Чтобы проверить свои предположения, попытался заглянуть в далекий космос и увидеть Млечный Путь, нашу Галактику. Возможно, одна из галактик на фотографии с телескопа «Хаббл» и есть мы! Но вижу я ее не такой, какая она сейчас, а такой, как она выглядела миллиард лет назад. Вот это да! Если размышления Билла верны, мы могли бы смотреть в прошлое, не исходя из представления об однородной Вселенной. Мы могли бы на самом деле узнать себя. За миллиард лет галактики и их группы значительно эволюционировали. Я упорно размышлял над способами проверить идею Билла, но в конце концов сдался. Это было в 1980-е. Сейчас научный инструментарий кардинально изменился. Когда-нибудь я вновь вернусь к гипотезе Тёрстона.

Этот пример иллюстрирует занятия экспериментаторов в свободное время. Мой наставник в физике, Луис Альварес, считал, что по пятницам после обеда ученые должны предаваться самым фантастическим размышлениям. Если вы специально не выделите такое время, никогда не сможете найти его. Это все равно что тренировка.

Глава 14

Конец времени

Теперь, когда мы знаем, что случилось за прошедшие 14 миллиардов лет, что можно сказать о грядущих 100 миллиардах?..

Узреть в песке бескрайнюю любовь

И небеса в цветке невинном,

В сиюминутном вечности порог

И мир в мгновении едином.

Уильям Блейк, «Прорицания невинности»

Еще в 1990-е годы, преподавая космологию, я сказал своему курсу, что не могу предсказать отдаленное будущее Вселенной. Но уверен, что касающееся ее важное открытие произойдет в ближайшее время. Через пять лет, утверждал тогда я, мы узнаем, бесконечна Вселенная или все-таки конечна, продолжится ее расширение всегда или в конечном счете этот процесс остановится и Вселенная вернется в прежнее состояние путем «Большого сжатия». И если такое сжатие произойдет, логично предположить, что это ознаменует конец пространства и времени, если только слово «конец» имеет какой-то смысл по отношению к тому, чего больше не существует.

Я также говорил: возможно, дело кончится тем, что Вселенная остановится на какой-то границе, разделяющей бесконечное и конечное (в смысле пространства и времени). Так что даже в том случае, если у нас будет точная картина Вселенной, это не даст ответа на вопрос, оказывается ли «всегда» таковым в действительности.

Я был абсолютно уверен в предчувствии скорого ответа. Дело в том, что я начал собственный эксперимент, призванный ответить на этот вопрос. И верил в своего бывшего студента Сола Перлмуттера[141], подхватившего из моих рук руководство этим проектом.

В поисках конца времени

Эксперимент с детектированием микроволнового излучения, о котором я рассказывал в предыдущей главе, был направлен на изучение природы Большого взрыва и структуры Вселенной при ее зарождении. Новый экспериментальный проект должен был определить будущее Вселенной. Путем к этому было выбрано гораздо более точное, чем ранее, определение в деталях поведения «расширения Хаббла».

Теория предсказывала, что расширение замедлится из-за самогравитации и взаимного притяжения галактик, расходящихся все дальше друг от друга. Это замедление можно было измерить, сравнивая расширение в ближайших галактиках с теми, которые от нас значительно удалены. Эти последние галактики покажут действие закона Хаббла таким, каким оно было миллиарды лет назад, и мы сможем увидеть, насколько замедлилось с тех пор расширение. Скорости галактик мы могли измерить с помощью того же эффекта, которым пользуется полиция при замере скорости машин: допплеровского сдвига.

Трудность заключалась в точном определении расстояния до галактик. Я решил, что так называемые сверхновые могут в этом помочь. Если бы мы смогли обнаружить замедление Вселенной, то сумели бы рассчитать, будет ли ее расширение вечным. Расчеты сводились практически к определению скоростей разбегания галактик. Будут ли галактики в расширяющейся Вселенной разбегаться или упадут обратно в «Большое сжатие»?

Параметр замедления Вселенной космологи обозначили последней буквой греческого алфавита Ω (омега). Мы собирались дать параметру определение, поэтому весь эксперимент я назвал «Проект “Омега”». Новый измеритель мог рассказать о возможном конце времени.

«Проект “Омега”» был задуман после того, как в 1978 году я услышал лекцию Роберта Вагонера в Стэнфордском университете. В ней он указал, что собственная яркость отдаленных сверхновых типа II[142]может быть определена скоростью расширения их оболочки и временем такого расширения. Скорость, помноженная на время, даст нам размер звезды. Если бы мы смогли найти отдаленные сверхновые, определить их яркость и измерить скорость на основании допплеровского смещения галактик, в которые они входят, то после этого смогли бы использовать их как «калибровочные свечи». Наблюдаемая яркость в сравнении с их собственной яркостью позволила бы определить расстояние до них.

Требовалось получить как можно больше информации от большого количества отдаленных сверхновых. Однако вспышка сверхновых – довольно редкое явление, случающееся раз в несколько сотен лет. И чтобы использовать такую информацию, вспышку нужно зафиксировать в первые несколько дней после возникновения. Придется наблюдать за сотнями галактик, возвращаясь к этому занятию каждые несколько ночей. Только тогда можно уловить сверхновую в критической фазе расширения.

Когда я рассказал учителю и научному руководителю моей докторской диссертации Луису Альваресу о лекции Вагонера, он припомнил, что профессор Высшей технической школы штата Нью-Мексико Стерлинг Колгейт как раз начал проект по автоматическому поиску сверхновых. Я встретился с Колгейтом и выяснил, что он отказался от проекта как от слишком сложного. Однако посоветовал мне попробовать, снабдив массой рекомендаций и наставлений по тем проблемам, которые ему в конечном счете не удалось решить.

Требовались телескоп и очень мощный компьютер для управления им. К счастью, мое открытие косинусной зависимости интенсивности микроволнового излучения в космосе, подтверждающей анизотропию Вселенной, было отмечено наградой – премией Национального научного фонда Алана Уотермана[143]: $150 000 «не связанных» денег на исследования, которые я волен был выбирать сам. Каким замечательным делом оказался этот грант! Можно было начать проект со сверхновыми без необходимости доказывать какому-то жюри, что ты способен его осуществить. Премия Уотермана сделала мой проект возможным. Я использовал бо льшую часть средств на приобретение необходимого компьютера (в те дни мощные машины были очень дороги) и на принятие в помощники недавнего выпускника университета Карла Пеннипакера.

Проект был пугающе сложным, и мне важна была поддержка. Сначала она была, но потом проект дважды закрывался администрацией (один раз директором по науке лаборатории Лоуренса университета в Беркли, а затем директором центра астрофизики частиц этого же университета). Но я все равно умудрялся каким-то образом выбивать финансирование и не останавливать эксперимент. Хорошо, что в то время я уже был на профессорском контракте: текущая работа (и зарплата) не зависели от следования приказам боссов. Мне показалось, что снова бюрократические сложности с проектом превзошли сложности научные, как это было с исследованием Джорджа Смута в NASA.

В 1986 году, через восемь лет после начала изучения сверхновых, к нам присоединился мой четвертый докторант, Сол Перлмуттер. Теперь я мог официально привлечь его к работе как взращенного мною доктора наук. Он быстро продемонстрировал удивительные лидерские качества. Сол полностью переписал программу для компьютера. Осматривая сотни галактик снова и снова, мы начали находить сверхновые. К 1992 году сообщили об обнаружении 20 таких звезд, включая открытие самой дальней на то время.

Большинство из найденных нами сверхновых по космологическим меркам находились относительно близко. Сол и Карл горели желанием совершить прорыв в науке и приступить к поискам очень далеких звезд такого типа. Для этого требовались более мощные телескопы. В то же время, по их мнению, это дарило надежду на то, что мы наконец обнаружим ожидаемое замедление расширения. Я сомневался, но доверился коллегам и одобрил новое направление. Сол разработал способ передачи информации по интернету, который в то время был довольно медленным. Он воспользовался математикой фракталов [144]. Насколько я знаю, он был первым человеком, кто применил этот продвинутый метод в научных измерениях. Сегодня фракталы применяются очень широко.

Затем Сол решил еще одну ключевую проблему, которая ставила меня в тупик. Он разработал схему обнаружения многих суперновых в одну ночь накануне новой (темной) луны, а также точное расписание наблюдения за небом с использованием мощных телескопов (таких как астрономические обсерватории в космосе) в следующую темную ночь. По моему мнению, этот с виду достаточно простой шаг вперед сделал наш проект полностью работающим.

«Неэкспериментаторы» могут удивиться, что я начал проект, еще не совсем понимая, как решать проблемы последующих измерений. Однако я научился у Луиса Альвареса, что такая смелость часто необходима – или вы никогда не справитесь с большой задачей. Важно быть уверенным, что вы сами (или члены вашей команды) при необходимости найдете нужное решение. Конечно, если бы я не располагал средствами от премии Уотермана, не решился бы на такой авантюризм. Наши судьи заранее требовали бы ответы на каждый вопрос и отвергали все запросы на финансирование, пока мы не представили бы удовлетворяющих их ответов.

Сол огласил свое решение на одном из совещаний с внешними судьями, которые оценивали нашу работу, чтобы вынести рекомендации по ее дополнительному финансированию. Эта была группа экспертов, ранее рекомендовавшая закрыть проект по сверхновым. После доклада Сола членам оценочной комиссии стало ясно, что проект может быть успешным. Один из членов комиссии, Роберт Киршнер, нашел нашу идею столь убедительной, что даже предложил создать в университете независимую исследовательскую группу для соревнования за научный результат.

К тому времени Сол стал подлинным лидером. И в 1992 году, через 15 лет после начала работы и через 6 – после прихода Сола, я попросил его взять руководство проектом на себя. Я постепенно отошел от него, сосредоточившись на других исследованиях. За пять следующих лет Сол настолько продвинулся в изучении сверхновых и оказался так близко к ответу на изначальный вопрос, что я убедил своих студентов в Беркли: скоро мы узнаем, будет ли время течь всегда или закончится вместе с «Большим сжатием».

Наши рекомендации