Ряды с произвольными членами. Абсолютная и условная сходимости. Признак абсолютной сходимости. Признаки Лейбница, Абеля, Дирихле

1. Ряды с произвольными членами. Абсолютная и условная сходимости

Пусть

Ряды с произвольными членами. Абсолютная и условная сходимости. Признак абсолютной сходимости. Признаки Лейбница, Абеля, Дирихле - student2.ru

Ряды с произвольными членами. Абсолютная и условная сходимости. Признак абсолютной сходимости. Признаки Лейбница, Абеля, Дирихле - student2.ru ряд с положительными членами (2)

Ряд (1) называется абсолютно сходящимся, если сходится ряд (2). Сходящийся ряд (1) называют условно сходящимся, если он абсолютно расходится.

2. Признак абсолютной сходимости

Абсолютно сходящийся ряд является сходящимся.

Доказательство.Основано на применении критерия Коши.

Ряд (2) – сходится Þ (по критерию Коши) Þ Ряды с произвольными членами. Абсолютная и условная сходимости. Признак абсолютной сходимости. Признаки Лейбница, Абеля, Дирихле - student2.ru

Þ (по критерию Коши) Þ ряд (1) – сходится. Доказано.

3. Признак Лейбница

Существуют ли условно сходящиеся ряды?

Рассмотрим класс знакочередующихся рядов: Ряды с произвольными членами. Абсолютная и условная сходимости. Признак абсолютной сходимости. Признаки Лейбница, Абеля, Дирихле - student2.ru (3).

Признак Лейбница.

Если для ряда (3) выполнены условия:

1) Ряды с произвольными членами. Абсолютная и условная сходимости. Признак абсолютной сходимости. Признаки Лейбница, Абеля, Дирихле - student2.ru невозрастающая;

2) Ряды с произвольными членами. Абсолютная и условная сходимости. Признак абсолютной сходимости. Признаки Лейбница, Абеля, Дирихле - student2.ru

то ряд (3) сходится и справедлива оценка остатка Ряды с произвольными членами. Абсолютная и условная сходимости. Признак абсолютной сходимости. Признаки Лейбница, Абеля, Дирихле - student2.ru

Доказательство.Рассмотрим Ряды с произвольными членами. Абсолютная и условная сходимости. Признак абсолютной сходимости. Признаки Лейбница, Абеля, Дирихле - student2.ru

Ряды с произвольными членами. Абсолютная и условная сходимости. Признак абсолютной сходимости. Признаки Лейбница, Абеля, Дирихле - student2.ru т.е. Ряды с произвольными членами. Абсолютная и условная сходимости. Признак абсолютной сходимости. Признаки Лейбница, Абеля, Дирихле - student2.ru неубывающая. С другой стороны Ряды с произвольными членами. Абсолютная и условная сходимости. Признак абсолютной сходимости. Признаки Лейбница, Абеля, Дирихле - student2.ru

Ряды с произвольными членами. Абсолютная и условная сходимости. Признак абсолютной сходимости. Признаки Лейбница, Абеля, Дирихле - student2.ru Итак, последовательность Ряды с произвольными членами. Абсолютная и условная сходимости. Признак абсолютной сходимости. Признаки Лейбница, Абеля, Дирихле - student2.ru неубывающая и ограниченная сверху и Ряды с произвольными членами. Абсолютная и условная сходимости. Признак абсолютной сходимости. Признаки Лейбница, Абеля, Дирихле - student2.ru . Для последовательности частичных сумм с нечётными номерами Ряды с произвольными членами. Абсолютная и условная сходимости. Признак абсолютной сходимости. Признаки Лейбница, Абеля, Дирихле - student2.ru Значит, Ряды с произвольными членами. Абсолютная и условная сходимости. Признак абсолютной сходимости. Признаки Лейбница, Абеля, Дирихле - student2.ru

Остаётся оценить остаток: Ряды с произвольными членами. Абсолютная и условная сходимости. Признак абсолютной сходимости. Признаки Лейбница, Абеля, Дирихле - student2.ru

Ряды с произвольными членами. Абсолютная и условная сходимости. Признак абсолютной сходимости. Признаки Лейбница, Абеля, Дирихле - student2.ru

Доказано.

Пример. Ряды с произвольными членами. Абсолютная и условная сходимости. Признак абсолютной сходимости. Признаки Лейбница, Абеля, Дирихле - student2.ru

Ряды с произвольными членами. Абсолютная и условная сходимости. Признак абсолютной сходимости. Признаки Лейбница, Абеля, Дирихле - student2.ru расходится

Ряды с произвольными членами. Абсолютная и условная сходимости. Признак абсолютной сходимости. Признаки Лейбница, Абеля, Дирихле - student2.ru

Исходный ряд сходится условно.

4. Признаки Абеля, Дирихле

Пусть дан ряд Ряды с произвольными членами. Абсолютная и условная сходимости. Признак абсолютной сходимости. Признаки Лейбница, Абеля, Дирихле - student2.ru(1).

Введём преобразования Абеля

Ряды с произвольными членами. Абсолютная и условная сходимости. Признак абсолютной сходимости. Признаки Лейбница, Абеля, Дирихле - student2.ru

Доказательство. Ряды с произвольными членами. Абсолютная и условная сходимости. Признак абсолютной сходимости. Признаки Лейбница, Абеля, Дирихле - student2.ru

Ряды с произвольными членами. Абсолютная и условная сходимости. Признак абсолютной сходимости. Признаки Лейбница, Абеля, Дирихле - student2.ru

Доказано.

С помощью преобразования Абеля доказываются следующие признаки сходимости ряда (1).

Признак Дирихле.

Если

1) Ряды с произвольными членами. Абсолютная и условная сходимости. Признак абсолютной сходимости. Признаки Лейбница, Абеля, Дирихле - student2.ru невозрастающая и стремится к нулю Ряды с произвольными членами. Абсолютная и условная сходимости. Признак абсолютной сходимости. Признаки Лейбница, Абеля, Дирихле - student2.ru ;

2) Ряды с произвольными членами. Абсолютная и условная сходимости. Признак абсолютной сходимости. Признаки Лейбница, Абеля, Дирихле - student2.ru ограниченная,

то ряд (1) – сходится.

Доказательство.Воспользуемся критерием Коши и будем оценивать суммы:

Ряды с произвольными членами. Абсолютная и условная сходимости. Признак абсолютной сходимости. Признаки Лейбница, Абеля, Дирихле - student2.ru (по преобразованию Абеля) Ряды с произвольными членами. Абсолютная и условная сходимости. Признак абсолютной сходимости. Признаки Лейбница, Абеля, Дирихле - student2.ru

Ряды с произвольными членами. Абсолютная и условная сходимости. Признак абсолютной сходимости. Признаки Лейбница, Абеля, Дирихле - student2.ru и по критерию Коши ряд (1) сходится.

Доказано.

Признак Абеля.

Если

1) Ряды с произвольными членами. Абсолютная и условная сходимости. Признак абсолютной сходимости. Признаки Лейбница, Абеля, Дирихле - student2.ru монотонная и ограниченная;

2) Ряды с произвольными членами. Абсолютная и условная сходимости. Признак абсолютной сходимости. Признаки Лейбница, Абеля, Дирихле - student2.ru сходится,

то ряд (1) – сходится.

Доказательствоаналогично доказательству признака Дирихле.

Частным случаем признака Дирихле является признак Абеля.

Если Ряды с произвольными членами. Абсолютная и условная сходимости. Признак абсолютной сходимости. Признаки Лейбница, Абеля, Дирихле - student2.ru монотонно убывает и стремится к нулю, то Ряды с произвольными членами. Абсолютная и условная сходимости. Признак абсолютной сходимости. Признаки Лейбница, Абеля, Дирихле - student2.ru сходится (2).

Ряды с произвольными членами. Абсолютная и условная сходимости. Признак абсолютной сходимости. Признаки Лейбница, Абеля, Дирихле - student2.ru ограниченные, значит ряд (2) сходится.

Рассмотрим ряд Ряды с произвольными членами. Абсолютная и условная сходимости. Признак абсолютной сходимости. Признаки Лейбница, Абеля, Дирихле - student2.ru

Оценим суммы Ряды с произвольными членами. Абсолютная и условная сходимости. Признак абсолютной сходимости. Признаки Лейбница, Абеля, Дирихле - student2.ru

Ряды с произвольными членами. Абсолютная и условная сходимости. Признак абсолютной сходимости. Признаки Лейбница, Абеля, Дирихле - student2.ru

Справедливы оценки

Ряды с произвольными членами. Абсолютная и условная сходимости. Признак абсолютной сходимости. Признаки Лейбница, Абеля, Дирихле - student2.ru

Ряды с произвольными членами. Абсолютная и условная сходимости. Признак абсолютной сходимости. Признаки Лейбница, Абеля, Дирихле - student2.ru и по признаку Дирихле ряд сходится.

Задача. Исследовать на сходимость ряд Ряды с произвольными членами. Абсолютная и условная сходимости. Признак абсолютной сходимости. Признаки Лейбница, Абеля, Дирихле - student2.ru

Указание. Рассмотреть Ряды с произвольными членами. Абсолютная и условная сходимости. Признак абсолютной сходимости. Признаки Лейбница, Абеля, Дирихле - student2.ru

ЛЕКЦИЯ 17

Условная и безусловная сходимости. Теорема Римана о перестановках условно сходящегося ряда. Критерий безусловной сходимости. Сходимость бесконечного произведения. Необходимое условие сходимости. Сведение сходимости бесконечного произведения к сходимости числового ряда. Абсолютная и условная сходимости

1. Условная и безусловная сходимости. Теорема Римана о перестановках условно сходящегося ряда

Биекция Ряды с произвольными членами. Абсолютная и условная сходимости. Признак абсолютной сходимости. Признаки Лейбница, Абеля, Дирихле - student2.ru называется числовой перестановкой N.

Если Ряды с произвольными членами. Абсолютная и условная сходимости. Признак абсолютной сходимости. Признаки Лейбница, Абеля, Дирихле - student2.ru числовой ряд (1), то ряд вида Ряды с произвольными членами. Абсолютная и условная сходимости. Признак абсолютной сходимости. Признаки Лейбница, Абеля, Дирихле - student2.ru называется его перестановкой.

Пример. Ряды с произвольными членами. Абсолютная и условная сходимости. Признак абсолютной сходимости. Признаки Лейбница, Абеля, Дирихле - student2.ru называется его перестановкой.

Ряды с произвольными членами. Абсолютная и условная сходимости. Признак абсолютной сходимости. Признаки Лейбница, Абеля, Дирихле - student2.ru

Если ряд (1) сходится для любой перестановки и к той же сумме, то он называется безусловно сходящимся.

Теорема Римана.Если ряд (1) сходится условно, то Ряды с произвольными членами. Абсолютная и условная сходимости. Признак абсолютной сходимости. Признаки Лейбница, Абеля, Дирихле - student2.ru и существуют перестановки, для которых переставленный ряд расходится.

Введем некоторые обозначения:

Ряды с произвольными членами. Абсолютная и условная сходимости. Признак абсолютной сходимости. Признаки Лейбница, Абеля, Дирихле - student2.ru

Доказательство.Пусть ряд (1) – сходится условно, Ряды с произвольными членами. Абсолютная и условная сходимости. Признак абсолютной сходимости. Признаки Лейбница, Абеля, Дирихле - student2.ru

Ряды с произвольными членами. Абсолютная и условная сходимости. Признак абсолютной сходимости. Признаки Лейбница, Абеля, Дирихле - student2.ru

В итоге построен ряд Ряды с произвольными членами. Абсолютная и условная сходимости. Признак абсолютной сходимости. Признаки Лейбница, Абеля, Дирихле - student2.ru . Получили ряд, являющийся перестановкой исходного ряда.

Нужно показать, что эта перестановка сходится к числу S. Возможны четыре случая, пусть Ряды с произвольными членами. Абсолютная и условная сходимости. Признак абсолютной сходимости. Признаки Лейбница, Абеля, Дирихле - student2.ru тогда

1) Ряды с произвольными членами. Абсолютная и условная сходимости. Признак абсолютной сходимости. Признаки Лейбница, Абеля, Дирихле - student2.ru ;

2) Ряды с произвольными членами. Абсолютная и условная сходимости. Признак абсолютной сходимости. Признаки Лейбница, Абеля, Дирихле - student2.ru

3) Ряды с произвольными членами. Абсолютная и условная сходимости. Признак абсолютной сходимости. Признаки Лейбница, Абеля, Дирихле - student2.ru

4) Ряды с произвольными членами. Абсолютная и условная сходимости. Признак абсолютной сходимости. Признаки Лейбница, Абеля, Дирихле - student2.ru

Оценим разность Ряды с произвольными членами. Абсолютная и условная сходимости. Признак абсолютной сходимости. Признаки Лейбница, Абеля, Дирихле - student2.ru в каждом из четырёх случаев.

1) Ряды с произвольными членами. Абсолютная и условная сходимости. Признак абсолютной сходимости. Признаки Лейбница, Абеля, Дирихле - student2.ru

2) Ряды с произвольными членами. Абсолютная и условная сходимости. Признак абсолютной сходимости. Признаки Лейбница, Абеля, Дирихле - student2.ru

3) Ряды с произвольными членами. Абсолютная и условная сходимости. Признак абсолютной сходимости. Признаки Лейбница, Абеля, Дирихле - student2.ru

4) Ряды с произвольными членами. Абсолютная и условная сходимости. Признак абсолютной сходимости. Признаки Лейбница, Абеля, Дирихле - student2.ru

Доказано.

Ряд (1) называется универсальным относительно перестановок, если Ряды с произвольными членами. Абсолютная и условная сходимости. Признак абсолютной сходимости. Признаки Лейбница, Абеля, Дирихле - student2.ru

Теорема (об универсальных рядах).Ряд (1) – универсальный относительно перестановок Û

1) Ряды с произвольными членами. Абсолютная и условная сходимости. Признак абсолютной сходимости. Признаки Лейбница, Абеля, Дирихле - student2.ru

2) Ряды с произвольными членами. Абсолютная и условная сходимости. Признак абсолютной сходимости. Признаки Лейбница, Абеля, Дирихле - student2.ru

Следствие: условно сходящийся ряд является универсальным относительно перестановок.

Задача. Проверить выполнение условий (1), (2) теоремы об универсальных рядах для условно сходящегося ряда.

Ряды с произвольными членами. Абсолютная и условная сходимости. Признак абсолютной сходимости. Признаки Лейбница, Абеля, Дирихле - student2.ru

противоречие.

Можно определить и другие понятия универсального числового ряда, например, универсальный относительно знака: ряд (1) – универсальный относительно знака, если Ряды с произвольными членами. Абсолютная и условная сходимости. Признак абсолютной сходимости. Признаки Лейбница, Абеля, Дирихле - student2.ru

Задача. Пусть ряд Ряды с произвольными членами. Абсолютная и условная сходимости. Признак абсолютной сходимости. Признаки Лейбница, Абеля, Дирихле - student2.ru сходится. Что можно сказать о сходимости рядов Ряды с произвольными членами. Абсолютная и условная сходимости. Признак абсолютной сходимости. Признаки Лейбница, Абеля, Дирихле - student2.ru

Ряд Ряды с произвольными членами. Абсолютная и условная сходимости. Признак абсолютной сходимости. Признаки Лейбница, Абеля, Дирихле - student2.ru не обязан сходиться, например Ряды с произвольными членами. Абсолютная и условная сходимости. Признак абсолютной сходимости. Признаки Лейбница, Абеля, Дирихле - student2.ru

Ряд Ряды с произвольными членами. Абсолютная и условная сходимости. Признак абсолютной сходимости. Признаки Лейбница, Абеля, Дирихле - student2.ru также не обязан сходиться. Построить пример.

2. Критерий безусловной сходимости

Теорема (о безусловной сходимости).Ряд (1) – сходится безусловно тогда и только тогда, когда ряд (1) сходится абсолютно.

Доказательство.Необходимость.

(1) – сходится безусловно Þ (от противного) Þ (1) – сходится условно (по теореме Римана) Þ (1) – не сходится безусловно – противоречие Þ (1) – сходится абсолютно.

Достаточность.

Ряды с произвольными членами. Абсолютная и условная сходимости. Признак абсолютной сходимости. Признаки Лейбница, Абеля, Дирихле - student2.ru перестановка Ряды с произвольными членами. Абсолютная и условная сходимости. Признак абсолютной сходимости. Признаки Лейбница, Абеля, Дирихле - student2.ru

Ряды с произвольными членами. Абсолютная и условная сходимости. Признак абсолютной сходимости. Признаки Лейбница, Абеля, Дирихле - student2.ru Доказано.

Замечание. Для абсолютно сходящегося ряда модуль суммы будет:

Ряды с произвольными членами. Абсолютная и условная сходимости. Признак абсолютной сходимости. Признаки Лейбница, Абеля, Дирихле - student2.ru т.к. Ряды с произвольными членами. Абсолютная и условная сходимости. Признак абсолютной сходимости. Признаки Лейбница, Абеля, Дирихле - student2.ru при Ряды с произвольными членами. Абсолютная и условная сходимости. Признак абсолютной сходимости. Признаки Лейбница, Абеля, Дирихле - student2.ru

3. Сходимость бесконечного произведения. Необходимое условие сходимости

Пусть Ряды с произвольными членами. Абсолютная и условная сходимости. Признак абсолютной сходимости. Признаки Лейбница, Абеля, Дирихле - student2.ru положительная последовательность, т.е. Ряды с произвольными членами. Абсолютная и условная сходимости. Признак абсолютной сходимости. Признаки Лейбница, Абеля, Дирихле - student2.ru .

Формальная запись (1) Ряды с произвольными членами. Абсолютная и условная сходимости. Признак абсолютной сходимости. Признаки Лейбница, Абеля, Дирихле - student2.ru называется бесконечным произведением.

Будем говорить, что бесконечное произведение (1) – сходится, если Ряды с произвольными членами. Абсолютная и условная сходимости. Признак абсолютной сходимости. Признаки Лейбница, Абеля, Дирихле - student2.ru где Ряды с произвольными членами. Абсолютная и условная сходимости. Признак абсолютной сходимости. Признаки Лейбница, Абеля, Дирихле - student2.ru последовательность частичных произведений. В противном случае произведение (1) – расходится.

Необходимое условие сходимости. Если (1) сходится, то Ряды с произвольными членами. Абсолютная и условная сходимости. Признак абсолютной сходимости. Признаки Лейбница, Абеля, Дирихле - student2.ru

Действительно, Ряды с произвольными членами. Абсолютная и условная сходимости. Признак абсолютной сходимости. Признаки Лейбница, Абеля, Дирихле - student2.ru

4. Сведение сходимости бесконечного произведения к сходимости числового ряда. Абсолютная и условная сходимости

Основная теорема.Бесконечное произведение (1) – сходится Ряды с произвольными членами. Абсолютная и условная сходимости. Признак абсолютной сходимости. Признаки Лейбница, Абеля, Дирихле - student2.ru сходится (2).

Доказательство.(1) – сходится Ряды с произвольными членами. Абсолютная и условная сходимости. Признак абсолютной сходимости. Признаки Лейбница, Абеля, Дирихле - student2.ru

Ряды с произвольными членами. Абсолютная и условная сходимости. Признак абсолютной сходимости. Признаки Лейбница, Абеля, Дирихле - student2.ru (2) – сходится.

Доказано.

Пример. Исследовать сходимость ряда Ряды с произвольными членами. Абсолютная и условная сходимости. Признак абсолютной сходимости. Признаки Лейбница, Абеля, Дирихле - student2.ru

Получаем Ряды с произвольными членами. Абсолютная и условная сходимости. Признак абсолютной сходимости. Признаки Лейбница, Абеля, Дирихле - student2.ru сходится условно.

Исходный ряд сходится условно.

Бесконечное произведение (1) назовём абсолютно сходящимся, если сходится ряд Ряды с произвольными членами. Абсолютная и условная сходимости. Признак абсолютной сходимости. Признаки Лейбница, Абеля, Дирихле - student2.ru . В противном случае (1) сходится условно. В предыдущем примере представлено условно сходящееся бесконечное произведение.

Для дальнейшего удобно обозначить Ряды с произвольными членами. Абсолютная и условная сходимости. Признак абсолютной сходимости. Признаки Лейбница, Абеля, Дирихле - student2.ru и рассматривать Ряды с произвольными членами. Абсолютная и условная сходимости. Признак абсолютной сходимости. Признаки Лейбница, Абеля, Дирихле - student2.ru (3), Ряды с произвольными членами. Абсолютная и условная сходимости. Признак абсолютной сходимости. Признаки Лейбница, Абеля, Дирихле - student2.ru (4), Ряды с произвольными членами. Абсолютная и условная сходимости. Признак абсолютной сходимости. Признаки Лейбница, Абеля, Дирихле - student2.ru (5).

Теорема.Произведение (3) – сходится абсолютно Ряды с произвольными членами. Абсолютная и условная сходимости. Признак абсолютной сходимости. Признаки Лейбница, Абеля, Дирихле - student2.ru (4) сходится абсолютно.

Доказательство.(3) сходится абсолютно Ряды с произвольными членами. Абсолютная и условная сходимости. Признак абсолютной сходимости. Признаки Лейбница, Абеля, Дирихле - student2.ru сходится и в частности Ряды с произвольными членами. Абсолютная и условная сходимости. Признак абсолютной сходимости. Признаки Лейбница, Абеля, Дирихле - student2.ru . Сравним ряды Ряды с произвольными членами. Абсолютная и условная сходимости. Признак абсолютной сходимости. Признаки Лейбница, Абеля, Дирихле - student2.ru и Ряды с произвольными членами. Абсолютная и условная сходимости. Признак абсолютной сходимости. Признаки Лейбница, Абеля, Дирихле - student2.ru при условии Ряды с произвольными членами. Абсолютная и условная сходимости. Признак абсолютной сходимости. Признаки Лейбница, Абеля, Дирихле - student2.ru : Ряды с произвольными членами. Абсолютная и условная сходимости. Признак абсолютной сходимости. Признаки Лейбница, Абеля, Дирихле - student2.ru для Ряды с произвольными членами. Абсолютная и условная сходимости. Признак абсолютной сходимости. Признаки Лейбница, Абеля, Дирихле - student2.ru . Из этих неравенств вытекает, что эти ряды сходятся абсолютно.

Доказано.

Следствие:если в произведении (3) все bn, начиная с некоторого номера, имеют один и тот же знак, то сходимость произведения (3) эквивалентна сходимости ряда (4).

Пример. Ряды с произвольными членами. Абсолютная и условная сходимости. Признак абсолютной сходимости. Признаки Лейбница, Абеля, Дирихле - student2.ru расходится.

Анализ этой теоремы показывает, что удобно использовать разложение Ряды с произвольными членами. Абсолютная и условная сходимости. Признак абсолютной сходимости. Признаки Лейбница, Абеля, Дирихле - student2.ru .

Задача. Обозначим: «+» - сходится, «-» - расходится, и заполним следующую таблицу:

  (4) (5) (3)
1. + + +
2. + - -
3. - + -
4. - - ?

Доказательство 1. Ряды с произвольными членами. Абсолютная и условная сходимости. Признак абсолютной сходимости. Признаки Лейбница, Абеля, Дирихле - student2.ru , Ряды с произвольными членами. Абсолютная и условная сходимости. Признак абсолютной сходимости. Признаки Лейбница, Абеля, Дирихле - student2.ru - сходятся Ряды с произвольными членами. Абсолютная и условная сходимости. Признак абсолютной сходимости. Признаки Лейбница, Абеля, Дирихле - student2.ru

Ряды с произвольными членами. Абсолютная и условная сходимости. Признак абсолютной сходимости. Признаки Лейбница, Абеля, Дирихле - student2.ru . Доказано.

Пример. Ряды с произвольными членами. Абсолютная и условная сходимости. Признак абсолютной сходимости. Признаки Лейбница, Абеля, Дирихле - student2.ru сходится, т.к. Ряды с произвольными членами. Абсолютная и условная сходимости. Признак абсолютной сходимости. Признаки Лейбница, Абеля, Дирихле - student2.ru сходится, но Ряды с произвольными членами. Абсолютная и условная сходимости. Признак абсолютной сходимости. Признаки Лейбница, Абеля, Дирихле - student2.ru расходится.

Доказательство 2.Опять Ряды с произвольными членами. Абсолютная и условная сходимости. Признак абсолютной сходимости. Признаки Лейбница, Абеля, Дирихле - student2.ru и из признака сравнения ряд Ряды с произвольными членами. Абсолютная и условная сходимости. Признак абсолютной сходимости. Признаки Лейбница, Абеля, Дирихле - student2.ru расходится. Общий член есть сумма двух последовательностей – сходящейся и расходящейся, значит, ряд Ряды с произвольными членами. Абсолютная и условная сходимости. Признак абсолютной сходимости. Признаки Лейбница, Абеля, Дирихле - student2.ru расходится, иначе ряд Ряды с произвольными членами. Абсолютная и условная сходимости. Признак абсолютной сходимости. Признаки Лейбница, Абеля, Дирихле - student2.ru был бы сходящимся как разность двух сходящихся рядов. Доказано.

Доказательство 3.Опять Ряды с произвольными членами. Абсолютная и условная сходимости. Признак абсолютной сходимости. Признаки Лейбница, Абеля, Дирихле - student2.ru

Ряды с произвольными членами. Абсолютная и условная сходимости. Признак абсолютной сходимости. Признаки Лейбница, Абеля, Дирихле - student2.ru И как в предыдущем случае ряд Ряды с произвольными членами. Абсолютная и условная сходимости. Признак абсолютной сходимости. Признаки Лейбница, Абеля, Дирихле - student2.ru сходится.

Доказано.

Доказательство 4.Два примера:

1) “-”, “-”Þ “-” Ряды с произвольными членами. Абсолютная и условная сходимости. Признак абсолютной сходимости. Признаки Лейбница, Абеля, Дирихле - student2.ru ;

2) “-”, “-”Þ “+”.

Ряды с произвольными членами. Абсолютная и условная сходимости. Признак абсолютной сходимости. Признаки Лейбница, Абеля, Дирихле - student2.ru

Ряд Ряды с произвольными членами. Абсолютная и условная сходимости. Признак абсолютной сходимости. Признаки Лейбница, Абеля, Дирихле - student2.ru Частичная сумма порядка совпадает с частичной суммой гармонического ряда, т.е. ряд расходится.

Ряды с произвольными членами. Абсолютная и условная сходимости. Признак абсолютной сходимости. Признаки Лейбница, Абеля, Дирихле - student2.ru расходится. Оба ряда расходятся.

Вычислим частичное произведение Ряды с произвольными членами. Абсолютная и условная сходимости. Признак абсолютной сходимости. Признаки Лейбница, Абеля, Дирихле - student2.ru

Ряды с произвольными членами. Абсолютная и условная сходимости. Признак абсолютной сходимости. Признаки Лейбница, Абеля, Дирихле - student2.ru т.к. произведение Ряды с произвольными членами. Абсолютная и условная сходимости. Признак абсолютной сходимости. Признаки Лейбница, Абеля, Дирихле - student2.ru расходится по следствию: Ряды с произвольными членами. Абсолютная и условная сходимости. Признак абсолютной сходимости. Признаки Лейбница, Абеля, Дирихле - student2.ru обобщённый гармонический ряд с показателем p = Ряды с произвольными членами. Абсолютная и условная сходимости. Признак абсолютной сходимости. Признаки Лейбница, Абеля, Дирихле - student2.ru - сходится.

Ряды с произвольными членами. Абсолютная и условная сходимости. Признак абсолютной сходимости. Признаки Лейбница, Абеля, Дирихле - student2.ru сходится к тому же числу, а значит и всё произведение сходится.

Доказано

Библиографический список

Основная литература

1. Ильин В.А., Поздняк Э.Г. Основы математического анализа. М.: Физматлит, Ч.1, 2002. – 646с., Ч. 2, 2002. – 447с.

2. Зорич В.А. Математический анализ. М.: МЦНМО, Ч.1, 2002. – 657с., Ч. 2, 2002. – 787с.

3. Кузнецов, Л. А. Сборник заданий по высшей математике. Типовые расчеты : учеб. пособие для вузов / Л. А. Кузнецов .— 10-е изд., стер. — СПб. ; М. ; Краснодар : Лань, 2008 .— 240 с.

4. Глаголев В.В., Иванов В.И., Смирнов О.И., Горбачев Д.В. Сборник заданий по математическому анализу. Типовые расчеты с приме­рами решений. Ч. 1. Тула: ТулГУ, 2007. – 172с.

5. Глаголев В.В., Иванов В.И., Смирнов О.И. Сборник заданий по математическому анализу. Типовые расчеты. Тула: ТулГУ, 2010. – 96с.

Дополнительная литература

1. Архипов Г.И., Садовничий В.А., Чубариков В.Н. Лекции по математическому анализу. М.: Дрофа, 2004. – 640с.

2. Виноградова И.А., Олехник С.Н., Садовничий В.А. Задачи и упражнения по математическому анализу. М.: Высшая школа, Кн.1, 2002. – 728с., Кн.2, 2002. – 712с.

3. Демидович Б.П. Сборник задач и упражнений по математическому анализу. М.: АСТ, 2007. – 560с.

4. Золотухин А.Я. Элементы теории множеств, меры и интеграла Лебега. Тула: ТулГУ, 2007. – 107с.

5. Рудин У. Основы математического анализа. СПб.: Лань, 2004. – 320с.

Периодические издания

1. Вестник МГУ. Серия 1. Математика. Механика. — М.: МГУ.— ISSN 0579-9368.

Наши рекомендации