Негізгі тригонометриялық теңбе-теңдіктер
α сүйір бұрышының әрбір мәніне сәйкес sinα-ның, cosα-ның, tgα-ның және ctgα-ның мәндерін анықтауға болады.
1. Катеттері а мен b, гипотенузасы с болатын, ал сүйір бұрыштары α мен β-ға тең АВС тік бұрышты үшбұрышы берілсін. Пифагор теоремасын жазамыз:
a2+b2=c2 (*)
§8, (1) және (2) формулалардан b=ccosα, a=csinα болатыны белгілі. Осы мәндерді (*) –ға қойсақ,
sin2α+cos2α=1 (1)
шығады. Бұл α бұрышының синусы мен косинусын байланыстыратын теңбе-теңдік.
2. Берілген тікбұрышты үшбұрыш үшін
ctgα=
болатыны белгілі. Бұл теңдіктерге b=ccosα, a=csinα мәндерін қойсақ,
(2)
(3)
Аламыз. Бұл теңдіктер кез-келген α сүйір бұрышы үшін орындалатын теңбе-теңдік болып саналады.
3. (1) тепе-теңдік әрбір мүшесін сos2α-ға немесе sin2α-ға бөліп, төмендегідей екі тепе-теңдікті алуға болады:
1+tg2α= (4)
1+ctg2α= (5)
4. АВС тікбұрышты үшбұрышына сүйір бұрыштар үшін α+β=900 өрнегі Бұдан β=900-α. 30-суреттен sin= , ал cosβ= сондықтан cos(900-α). Сонда
cos(900-α) =sinα (6)
теңбе-теңдігін аламыз. Осы сияқты
sin(900-α)=cosα (7)
теңбе-теңдігін алуға болады.
Есептер шығару
Оқулықпен жұмыс
№144. Өрнекті ықшамдаңдар
1) 2+sin2α+cos2α=2+1=3
2) (1 – sinα )(1+sinα)=1-sin2α=cos2α
№145.
1) (1+ctg2α)∙sin2α+1=
2) tgα∙ctgα+sinα=1+sinα
4. Үйге тапсырма: §10 №144 (2), 145 (2)
Орытындылау
Слайд 1.sin2α+cos2α=1
2. 5. 1+ctg2α=
3. 6. cos(900-α) =sinα
4. 1+tg2α= 7. sin(900-α)=cosα
30-сабақ
Сабақтың тақырыбы:Есептер шығару
Сабақтың мақсаты:
Білімділік:Негізгі тригонометриялық теңбе – теңдіктерді есептер шығаруда, теңбе-теңдіктерді дәлелдеуде қолдана білу..
Дамытушылық:Оқушылардың ой өрісін, есте сақтау, сызбамен жұмыс істеу қабілеттерін, дағдыларын дамыту.
Тәрбиелік:Оқушыларды ұқыптылыққа, шыдамдылыққа, нәтиже алуға баулу.
Сабақ түрі:Практикалық сабақ
Көрнекілігі: интерактивті тақта, слайд, есептер жинағы
Сабақтың барысы: 1. Ұйымдастыру кезеңі
2. Үй тапсырмасын сұрау
3. Есептер шығару
(1)-(7) теңбе-теңдіктерді қолданып №146-148 есептерді шығарамыз:
№146 α<900 үшін (2tg2α∙cos2α+2cos2 α)∙sin α+3sin α=5sin α тепе-теңдігін дәлелдеңдер.
Шешуі: (2tg2α∙cos2α+2cos2 α)∙sin α+3sinα=2cos2α(tg2 α+1)∙sin α+3sin α=2cos2 α∙ ∙ sin α+3sin α=2sin α+3sin α=5sin α
5sin α=5sin α
№148. α<900 үшін 1) tg (900- α)=ctg α
tg α= , sin(900-α)=cosα , cos(900-α) =sinα
tg90= =
ctg α= ctg α дәлелденді.
№149. α<900 үшін sinα-ны, cosα-ны, tg α-ны, ctg α-ны анықтаңдар
1) cos2 α=
2) Шешуі: sin α=
tgα= = : ctgα= = =
3) cosα=0.8
sin α= = =
tgα= = , ctgα=
Қорытындылау. 1-слайд
Шешуі: Өрнекті ықшамдаңдар.
2-слайд
Өрнекті ықшамдаңдар:
3-слайд.
Өрнектерді ықшамдаңдар
Үйге тапсыра: №147, 148,(2),149 (2)
31-сабақ
Сабақтың тақырыбы:§11. 300, 450 және 600 бұрыштары үшін синустың, косинустың, тангенстің және котангенстің мәндері.
Сабақтың мақсаты:
Білімділік:α бұрышы 300, 450, 600-қа тең болғанда cosα, sinα, tgα,ctga –ның кестелік мндерін білу, біреуінің мәні бойынша қалғандарын есептеу, тригонометриялық теңбе-теңдіктерді және 300, 450, 600 т.б. бұрыштар үшін синус, косинус, тангенс, котангенс кестесін есептер шығаруда қолдана білу.
Дамытушылық:Оқушылардың ой өрісін, есте сақтау, сызбамен жұмыс істеу қабілеттерін, дағдыларын дамыту.
Тәрбиелік:Оқушыларды ұқыптылыққа, шыдамдылыққа, нәтиже алуға баулу.
Сабақ түрі:Жаңа білімді игеру
Көрнекілігі: интерактивті тақта, слайд, есептер жинағы
Сабақтың барысы: 1. Ұйымдастыру кезеңі
2. Үй тапсырмасын сұрау: № 147, 148(2), 149 (2)
3. Жаңа сабақты баяндау.
§11. 300, 450 және 600 бұрыштары үшін синустың, косинустың, тангенстің