Метод эквивалентного генератора

Метод эквивалентного генератора позволяет произвести частичный анализ электрической цепи. Например, определить ток в какой-либо одной ветви сложной электрической цепи и исследовать поведение этой ветви при изменении ее сопротивления. Сущность метода заключается в том, что по отношению к исследуемой ветви amb (рис. 1.28, а) сложная цепь заменяется активным двухполюсником А (смотри рис. 1.23), схема замещения которого представляется эквивалентным источником (эквивалентным генератором) с ЭДС Eэ и внутренним сопротивлением r0э, нагрузкой для которого является сопротивление R ветви amb.

Если известны ЭДС и сопротивление эквивалентного генератора, то ток I в ветви amb определяется по закону Ома

Метод эквивалентного генератора - student2.ru .

Покажем, что параметры эквивалентного генератора Eэ и r0э можно определить соответственно по режимам холостого хода и короткого замыкания активного двухполюсника.

В исследуемую схему (рис. 1.28, а) введем два источника, ЭДС которых E1 и Eэ равны и направлены в разные стороны (рис. 1.28, б). При этом величина тока I в ветви amb не изменится. Ток I можно определить как разность двух токов I=Iэ−I1, где I1 – ток, вызванный всеми источниками двухполюсника А и ЭДС E1 (рис. 1.28, в); Iэ – ток, вызванный только ЭДС Eэ (рис. 1.28, г).

Если выбрать ЭДС E1 такой величины, чтобы получить в схеме (1.28, в) ток I1=0, то ток I будет равен (рис. 1.28, г)

Метод эквивалентного генератора - student2.ru ,

где r0э – эквивалентное сопротивление двухполюсника А относительно выводов а и b.

Метод эквивалентного генератора - student2.ru

Рис. 1.28

Так как при I1=0 (рис. 1.28, в) активный двухполюсник А будет работать относительно ветви amb в режиме холостого хода, то между выводами a и b установится напряжение холостого хода U=Uхх и по второму закону Кирхгофа для контура amba получим E1=I1R+Uхх=Uхх. Но по условию Eэ=E1, поэтому и Eэ=Uхх. Учитывая это, формулу для определения тока I можно записать в такой форме:

(1.26)

Метод эквивалентного генератора - student2.ru .

В соответствии с (1.26) электрическая цепь на рис. 1.28, а может быть заменена эквивалентной цепью (рис. 1.28, д), в которой Eэ=Uхх и r0э следует рассматривать в качестве параметров некоторого эквивалентного генератора.

Значения Eэ=Uхх и r0э можно определить как расчетным, так и экспериментальным путем. Для расчетного определения Uхх и r0э необходимо знать параметры элементов активного двухполюсника и схему их соединения.

Для определения величины r0э необходимо удалить из схемы двухполюсника все источники, сохранив все резистивные элементы, в том числе и внутренние сопротивления источников ЭДС. Внутренние сопротивления источников напряжений принять равными нулю. Затем рассчитать известными методами эквивалентное сопротивление относительно выводов ab.

Для определения величины Eэ разомкнем цепь и определим по методу узлового напряжения напряжение Uab=Uхх=Eэ между выводами ab активного двухполюсника.

Экспериментально параметры эквивалентного генератора можно определить по результатам двух опытов. Разомкнув ветвь с сопротивление R (рис. 1.28, д), измеряем напряжение между выводами a и b Uab=Uхх=Eэ (опыт холостого хода).

Для определения r0э проводится (если это допустимо) опыт короткого замыкания: заданная ветвь замыкается накоротко и в ней измеряется ток короткого замыкания Iкз. По закону Ома рассчитываем величину r0э=Eэ/Iкз.

Метод контурных токов

Метод непосредственного применения законов Кирхгофа громоздок. Имеется возможность уменьшить количество совместно решаемых уравнений системы. Число уравнений, составленных по методу контурных токов, равно количеству уравнений, составляемых по второму закону Кирхгофа.
Метод контурных токов заключается в том, что вместо токов в ветвях определяются, на основании второго закона Кирхгофа, так называемые контурные токи, замыкающиеся в контурах.
На рис. в качестве примера изображена двухконтурная схема, в которой I11 и I22 - контурные токи.

Метод эквивалентного генератора - student2.ru
Рис. 4.2
Токи в сопротивлениях R1 и R2 равны соответствующим контурным токам. Ток в сопротивлении R3, являющийся общим для обоих контуров, равен разности контурных токов I11 и I22, так как эти токи направлены в ветви с R3 встречно.

Порядок расчета

Выбираются независимые контуры, и задаются произвольные направления контурных токов.
В нашем случае эти токи направлены по часовой стрелке. Направление обхода контура совпадает с направлением контурных токов. Уравнения для этих контуров имеют следующий вид:

Метод эквивалентного генератора - student2.ru

Перегруппируем слагаемые в уравнениях

Метод эквивалентного генератора - student2.ru (4.4)

Метод эквивалентного генератора - student2.ru (4.5)

Суммарное сопротивление данного контура называется собственным сопротивлением контура.
Собственные сопротивления контуров схемы

Метод эквивалентного генератора - student2.ru , Метод эквивалентного генератора - student2.ru .

Сопротивление R3, принадлежащее одновременно двум контурам, называется общим сопротивлением этих контуров.

Метод эквивалентного генератора - student2.ru ,

где R12 - общее сопротивление между первым и вторым контурами;
R21 - общее сопротивление между вторым и первым контурами.
E11 = E1 и E22 = E2 - контурные ЭДС.
В общем виде уравнения (4.4) и (4.5) записываются следующим образом:

Метод эквивалентного генератора - student2.ru ,

Метод эквивалентного генератора - student2.ru .

Собственные сопротивления всегда имеют знак "плюс".
Общее сопротивление имеет знак "минус", если в данном сопротивлении контурные токи направлены встречно друг другу, и знак "плюс", если контурные токи в общем сопротивлении совпадают по направлению.
Решая уравнения (4.4) и (4.5) совместно, определим контурные токи I11 и I22, затем от контурных токов переходим к токам в ветвях.
Ветви схемы, по которым протекает один контурный ток, называются внешними, а ветви, по которым протекают несколько контурных токов, называются общими. Ток во внешней ветви совпадает по величине и по направлению c контурным. Ток в общей ветви равен алгебраической сумме контурных токов, протекающих в этой ветви.
В схеме на Рис. 4.2

Метод эквивалентного генератора - student2.ru .

Рекомендации

Контуры выбирают произвольно, но целесообразно выбрать контуры таким образом, чтобы их внутренняя область не пересекалась ни с одной ветвью, принадлежащей другим контурам.
Контурные токи желательно направлять одинаково (по часовой стрелке или против).
Если нужно определить ток в одной ветви сложной схемы, необходимо сделать его контурным.
Если в схеме имеется ветвь с известным контурным током, этот ток следует сделать контурным, благодаря чему количество уравнений становится на единицу меньше.

Наши рекомендации