КЗ в сетях с изолированной нейтралью.
Под нейтралью подразумеваются нейтрали трансформаторов, входящих в электрическую сеть одного напряжения, то есть имеющих электрическую связь. Как мы помним, обмотки разных напряжений трансформатора электрической связи между собой не имеют, а имеют магнитную связь, значит и сети разных напряжений между собой электрически не связаны. Если на трансформаторах одной сети заземлить (соединить с землей) нейтрали обмоток одного напряжения (как мы помним, в нормальном режиме работы трансформатора напряжение на нейтрали равно нулю), то электрическая сеть этого напряжения и будет сетью с заземленной нейтралью. Если же все нейтрали обмоток одного напряжения трансформаторов одной сети не имеют связи с землей, то эти сети являются сетями с изолированной нейтралью.
Если на оборудовании в сети с изолированной нейтралью произойдет замыкание одной фазы (одного провода) на землю, то замкнутого контура не будет, так как он разорван в месте нейтраль – земля и тока большой величины в точке замыкания не будет. Большого тока не будет, но ток , хоть и небольшой, все же будет – это зарядный или емкостной ток данной сети. Величина его зависит от емкости данной сети, которая в данном случае работает как конденсатор, емкость которого зависит от протяженности линий этой сети. Сети с изолированной нейтралью еще называют сети с малым током замыкания на землю. В случае однофазного замыкания на землю в сети с изолированной нейтралью немедленного отключения оборудования, на котором произошло замыкание, не требуется, т.к. отсутствуют большие токи способные привести к повреждению оборудования и оно может работать сколь угодно долго не прерывая питания потребителей. Однофазное замыкания в сети с изолированной нейтралью не желателено и его нужно устранить в возможно более короткий срок.
1. Во-первых, при нормальном режиме работы сети напряжение каждой фазы относительно земли в (корень из 3) раз меньше напряжения между фаз (напряжение каждой фазы относительно земли называется фазным, а напряжение между фазами – линейным). При замыкании одной фазы на землю, на двух других фазах по отношению к земле напряжение повышается до линейного (увеличивается в (корень из 3) раз), т.к. земля в данной сети уже имеет такой же потенциал, как и фаза замкнувшая на землю. Если в какой-то точке сети на одной из неповрежденных фаз из-за слабой, по какой-то причине, изоляции произойдет ее «пробой», то возникнет двухфазное короткое замыкание (по контуру: фаза - точка замыкания на землю – земля - пробитый изолятор - вторая фаза - обмотки трансформатора), которое сопровождается большими токами повреждающими оборудование. Другими словами – однофазное замыкание на землю в сети с изолированной нейтралью опасно переходом в двухфазное короткое замыкание.
2. Во-вторых, однофазное замыкание на землю в сети с изолированной нейтралью представляет опасность для людей, находящихся вблизи точки замыкания. Поскольку напряжение возникающее на поверхности земли в точке соприкосновения с фазой резко уменьшается при удалении от этой точки (полностью исчезает на расстоянии приблизительно 8 м), то человек, оказавшийся на расстоянии ближе 8 м к точке замыкания попадет в зону напряжения. При этом, если стоять, держа ноги вместе, ничего страшного не произойдет, но стоит ступням ног оказаться на расстоянии друг от друга одной ближе, другой дальше от точки замыкания, то между этими точками возникнет разность потенциалов, т.к. одна нога (которая ближе к точке замыкания) находится в зоне более высокого напряжения, чем другая и человека «долбанет» не трудно догадаться в каком месте, причем чем шире шаг, тем больше разность потенциалов. Поэтому из зоны замыкания нужно выходить либо прыжками, либо мелкими шажками. Этот эффект называется шаговым напряжением. Еще существует понятие напряжения прикосновения. Это когда человек касается рукой корпуса оборудования в котором произошло замыкание на землю (на корпус, что одно и тоже, потому что все корпуса оборудования должны быть заземлены).
3. В-третьих, емкостной ток в точке замыкания на землю при величине более 5-10 А проходит в виде электрической дуги, что при замыканиях внутри трансформаторов или генераторов приводит к повреждению обмотки и магнитопровода. Поэтому на генераторах с током замыкания на землю более 5 А устанавливается защита на отключение генератора при возникновении замыкания на землю. В сетях напряжением 6, 10 и 35 кВ, где токи замыкания на землю превышают соответственно 30, 20 и 10 А применяются устройства компенсации емкостного тока, которые снижают его до величины менее 5 А. Это так называемые дугогасящие катушки (ДГК), которые представляют из себя сердечник (магнитопровод) с намотанной на него обмоткой и помещенный в герметичный корпус заполненный трансформаторным маслом. Один конец обмотки подключен к нейтрали трансформатора сети, подлежащей компенсации, а другой соединен с землей. Так как сети 6-10 кВ питаются от вторичных обмоток трансформаторов 110-35 кВ, соединенных в треугольник, то для ДГК либо ставится отдельный трансформатор 6-10 кВ, отмотка которого соединена в звезду, либо она включается в нейтраль трансформатора собственных нужд подстанции. Поскольку катушка представляет из себя индуктивное сопротивление, то при замыкании на землю она оказывается под фазным напряжением (земля это фаза, а нейтраль трансформатора - нуль) и по ней протекает индуктивный ток. А индуктивный ток противоположен по направлению емкостному току в точке замыкания на землю и уничтожает его. Величина индуктивного тока регулируется количеством витков катушки. Величина емкостного тока замыкания на землю сети определяется (замеряется) опытным путем при помощи искусственно (сознательно) созданного замыкания на землю. Сети, где применяются дугогасящие катушки, называются еще сетями с компенсированной нейтралью.
В нашей энергетике с изолированной нейтралью работают сети напряжением 6, 10 и 35 кВ. Сети остальных напряжений работают в режиме заземленной нейтрали.
Рис. Трехфазная сеть с изолированной нейтралью: схема протекания емкостных токов при однофазном замыкании на землю.
Сети напряжения до 1 кВ с изолированной нейтралью являются, как правило, малоразветвленной, к ним так же относятся трехпроходные сети напряжением 380 и 660 В.
Электроустановки с изолированной нейтралью следует применять при повышенных требованиях в отношениях безопасности (торфяные разработки, угольные шахты, гонные карьеры и др. опасные производства) и при условии надежного контроля изоляции сети для быстрого обнаружения замыкания на землю. Системы с изолированной нейтралью, как правило, не имеют четвертого (нулевого) провода. В таких сетях при замыкании на землю через место повреждения будут проходить только емкостные токи, обусловленные напряжением и емкостью неповрежденных фаз. Напряжение поврежденной фазы по отношению к земле будет равно нулю, а напряжение двух других фаз становится равными междуфазным напряжением. При замыкании на землю система питания сети с изолированной нейтралью не отключается и может работать до отыскания повреждения персоналом согласно ПУЭ до 3 часов.
Дифференциальное реле тока.
Дифференциальное реле.
Устройство защитного отключения. УЗО. дифференциальное реле,
диффавтомат - все это одно и тоже конструктивное устройство.
Дифференциальное реле или УЗОпредназначено для обеспечения
защиты человека от поражения электрическим током при прямом
прикосновении к одной из токоведущих частей (оголенный провод,
корпус электрического аппарата попавшего под напряжения и т.д.)- и
способно защитить от возгораний и пожаров, возникающих на
объектах вследствие возможных повреждений изоляции, неисправностей электропроводки и электрооборудования. УЗО устройствозащитного отключения (диффреле) определяет возникший в проводке дисбаланс тока вследствие возникновения тока утечки и отключает в течении 10-20 мсек (механическая инерция аппарата) подачу электропитания.
Устройство защитного отключения (УЗО) отслеживает утечку тока из цепи (тело
человека выступает в роли проводника) и обеспечивает автоматическое отключение
электропитания аварийного участка электроснабжения за время, не превышающее 20мсек
(+40...-60%) с момента возникновения утечки.
Второй вариант (дифференциального реле):