Последовательное соединение электродетонаторов получило наибольшее распространение на практике (рис. 3.1).
а)
б)
Рисунок 3.1– Схемы последовательных ЭВС: а-однорядная; б – многорядная;
Оно наиболее простое и наглядное, проверяется простыми приборами со взрывного пункта. Ток во всех электродетонаторах одинаков и равен току в ЭВС. Недостатки: сравнительно небольшое (ограниченное) количество взрываемых ЭД, возможность отказов исправных при попадании в сеть дефектных ЭД.
Параллельные ЭВС
Параллельные ЭВС более надежны в работе по сравнению с последовательными ЭВС. При выходе из строя одного из ЭД и попадании в сеть дефектного ЭД откажет только этот ЭД. Утечка тока через плохую изоляцию проводов и сростков вследствие малого сопротивления сказывается в параллельных ЭВС меньше, чем в последовательных ЭВС.
Недостаток: более сложная, чем у последовательных ЭВС схема, которую невозможно проверить приборами со взрывного пункта, сравнительно небольшое количество взрываемых ЭД, неравномерное распределение токов между ЭД, особенно в ступенчатых схемах, возможность отказа всех ЭД при коротком замыкании между проводами, сложность расчета, особенно ступенчатой ЭВС (рис.3.2).
а) б)
Рисунок 3.2 - Схемы параллельных ЭВС: а - пучковая; б – ступенчатая.
Кольцевые ЭВС с двумя или тремя (схема «три кольца») антеннами удобны для монтажа при проходке стволов шахт и являются разновидностью параллельных ступенчатых сетей. При определенном соотношении между числом ЭД, сечением и длиной антенных проводов число взрываемых ЭДС может быть увеличено (рис. 3.3).
а) б)
в) г)
д) е)
Рисунок 3.3 - Схемы кольцевых параллельно- ступенчатых ЭВС:
а, б, в, г – с двумя антеннами, соответственно с прямым (а) и обратным (б) питанием, с разомкнутым питанием в одной (в) и двух (г) точках; д, е – «три кольца» с замкнутыми (д) и разомкнутыми кольцами.
В кольцевых схемах с двумя разомкнутыми антеннами и прямым питанием (рис. 3.3,в) распределение импульсов тока между ЭД более благоприятное с точки зрения предотвращения отказов, чем при обратном питании (рис. 3.3,г).
Кольцевые ЭВС с замкнутыми кольцами (по схеме «три кольца») (рис. 3.3,д) позволяют при неизменном сечении проводов магистрали удвоить число ЭД в сети или при одном и том же числе ЭД уменьшить в два раза потребляемый ток и сечение магистрали.
Разомкнутая кольцевая схема дает наиболее равномерное распределение токов между ЭД ( при условии, что разница в числе ЭД, присоединенных к обеим полуантеннам, не превышает единицы по сравнению с основной схемой (рис. 3.3,е) и ее другими разновидностями.
Недостатки параллельных ЭВС: они более сложные по сравнению с последовательными ЭВС; невозможность их проверки с взрывного пункта; сравнительно небольшое количество взрываемых ЭД; наибольший ток в магистрали и ее сечении; неравномерность распределения токов; возможность отказа всех ЭД при коротком замыкании между проводами, сложность расчета, особенно ступенчатых схем.
ЭВС с парным включением электродетонаторов (ЭД)
В каждом боевике
Эти ЭВС (рис. 3.4) более надежны, чем простые последовательные соединения. Предпочтительнее ЭВС с парно-последовательным соединением ЭД, так как в этой схеме легче обнаружить дефекты монтажа, и она обеспечивает взрывание заряда при наличии в боевике одного короткозамедленного ЭД при исправности парного с ним ЭД (рис. 3.4, а); в этих условиях парно-последовательное соединение (рис. 3.4, б) даст отказ, так как короткозамкнутый ЭД зашунтирует исправный парный с ним ЭД. Вместе с тем, ЭВС с парно - параллельным соединением ЭД позволяет взрывать больше зарядов, чем с парно-последовательным соединением.
а)
б)
Рисунок 3.4 - Схемы ЭВС с парным включением ЭД в боевике.
а – парно-последовательное; б – парно-параллельное.
Смешанные ЭВС
Различают последовательно – параллельные (рис. 3.5) и параллельно-последовательное ЭВС (рис.3.6).
К смешанным относят ЭВС, имеющие различные виды соединения электродетонаторов в группах и групп электродетонаторов между собой.
К ним относят последовательно-параллельное и параллельно-последовательное соединения электровзрывной сети. Первая часть названия смешанной сети указывает на вид соединения электродетонаторов в группах между собой, вторая – вид соединения групп электродетонаторов в ЭВС между собой.
а)
б)
в)
г)
Рисунок 3.5- Схема последовательно – параллельных ЭВС
а – пучковая однорядная с боковым примыканием магистрали;
б – пучковая многорядная с торцевым примыканием магистрали;
в – пучковая сложная; г – ступенчатая.
а)
б)
Рисунок 3.6 - Схема параллельно последовательной ЭВС
а – параллельно-последовательная простая ЭВС;
б - параллельно-последовательная с парно-последовательным включением ЭД.
В смешанных ЭВС должно соблюдаться соответствие между сопротивлением магистрали и числом параллельных групп с последовательным соединением (ЭД). В противном случае токи в группах могут оказаться ниже нормированного значения.
При ведении БВР применяют также дублированные ЭВС (рис. 3.7).
В последовательно- параллельных ЭВС используются источники тока с относительно низким напряжением, при этом можно взорвать практически любое количество ЭД при достаточной мощности источника тока. Обеспечивается равенство токов в параллельных ветвях при соответствующем распределении ЭД по группам. Проверка целостности цепи и правильности монтажа производят путем измерения сопротивления каждой параллельной ветви. Ток в магистрали и ее сечение меньше, чем при параллельной ЭВС. Расчет пучковой сети не сложен.
Недостатки последовательно- параллельных ЭВС по сравнению с последовательными сетями: усложняется проверка сети; увеличивается ток в магистрали, ее сечение, длина проводов распределительной сети; сеть менее наглядна и более сложна для расчета.
Параллельно-последовательные ЭВС менее надежны и удобны, чем последовательно-параллельные. По этим причинам и применяются редко.
а)
б)
Рисунок 3.7 -Схемы дублированных ЭВС
Они используются, например, тогда, когда при проверке последовательной сети обнаружены нарушения изоляции ее проводов и требуется перемонтировать ее таким образом, чтобы избежать отказов из-за утечки токов.