Основные матричные операции

При использовании матричных операций следует помнить, что для сложения или вычитания матрицы должны быть одного размера, а при перемножении число столбцов первой матрицы обязано равняться числу строк второй матрицы. Сложение и вычитание матриц, так же как чисел и векторов, осуществляется при помощи знаков плюс и минус

Основные матричные операции - student2.ru

а умножение — знаком звездочка *. Введем матрицу размером 3×2

Основные матричные операции - student2.ru

Умножение матрицы на число тоже осуществляется при помощи звездочки, причем умножать на число можно как справа, так и слева. Возведение квадратной матрицы в целую степень производится с использованием оператора ^

Основные матричные операции - student2.ru

Проверьте полученный результат, умножив матрицу Р саму на себя.

Создание матриц специального вида

Заполнение прямоугольной матрицы нулями производится встроенной функцией zeros

Основные матричные операции - student2.ru

Единичная матрица создается при помощи функции eye

Основные матричные операции - student2.ru

Матрица, состоящая из единиц, образуется в результате вызова функции ones

Основные матричные операции - student2.ru

MatLab предоставляет возможность заполнения матриц случайными числами. Результатом функции rand является матрица чисел, равномерно распределенных между нулем и единицей, а функции randn — матрица чисел, распределенных по нормальному закону с нулевым средним и единичной дисперсией.

Функция diag формирует диагональную матрицу из вектора, располагая элементы по диагонали.

Матричные вычисления

MatLab содержит множество различных функций для работы с матрицами. Так, например, транспонирование матрицы производится при помощи апострофа '

Основные матричные операции - student2.ru

Нахождение обратной матрицы проводится с помощью функции inv для квадратных матриц

Основные матричные операции - student2.ru

Заключение

MATLAB - высокоуровневая система программирования, позволяющая резко сократить затраты труда при проверке алгоритмов и проведении прикидочных расчетов. Возможность проведения больших расчетов на MATLAB'е определяется в основном теми затратами времени, на которые может пойти пользователь: здесь приходится выбирать между легкостью и наглядностью программирования и представления результатов, с одной стороны, и затратами времени на счет - с другой. Система очень удобна для освоения и апробации численных методов, что мы и хотим показать здесь прежде всего. Именно поэтому она рекомендуется как одна из основных для физиков и многих других естественно-научных специальностей в ведущих американских университетах. Детальное освоение любой большой программной системы - это достаточно длительный процесс, основу которого составляют индивидуальная работа, и наши занятия призваны дать лишь первоначальный импульс этому процессу в отношении MATLAB'а. Темы 2 - 4 представляют сравнительно элементарное введение, а в остальных рассматриваются более сложные примеры, показывающие, как можно использовать программные и графические возможности системы для исследования численных алгоритмов.

Наши рекомендации