Назначение и устройство
Реферат
на тему: «Струйные насосы».
Классификация и принцип работы струйных насосов.
Классификация.
Струйные насосы относятся к классу динамических насосов. По природе преобладающих сил, действующих на жидкость при работе струйных насосов, они относятся к смешанному виду, так как перекачиваемая жидкость получает энергию за счет действия на неё как массовых сил (сил инерции), так и силы жидкостного трения.
В пожарной охране применяют два типа струйных насосов по состоянию рабочей среды, подводимой к насосу: газоструйныеиводоструйные.
Принцип работы струйного насоса. Рабочая среда подходит к насадку 1, который имеет сопло. На выходе из сопла жидкость, обладая запасом кинетической энергии, имеет максимальную скорость.
Увеличение скорости потока рабочей жидкости приводит к уменьшению давления в струе и камере 2 ниже атмосферного. Эжектируемая жидкость под действием атмосферного давления поступает в камеру 2 и уносится рабочей струёй в расширяющуюся камеру диффузора 3, где уменьшается скорость (скоростной напор) и увеличивается пьезометрический напор (давление) жидкости. Расход жидкости Q3 в камере диффузора 3 равен сумме расходов рабочей Q1 и эжектируемой жидкости Q2:
Q3= Q1+Q2
Физические зависимости работы струйного насоса могут быть выражены уравнением неразрывности потока и уравнением сохранения энергии:
Q = SV и P/γ + V2/2q + Z = const
Струйные насосы характеризуются следующими основными параметрами:
- коэффициентом эжекции = QЭ/Q1;
- коэффициентом подпора = H2/ H1;
- коэффициентом площади сечений m = 2/ 1;
- коэффициентом полезного действия = ;
где:
Q3 – подача эжектируемой жидкости, (м3/с);
Q1 - подача рабочей жидкости, (м3/с);
H2 - напор за диффузором, (м);
H1 - напор перед соплом, (м);
2 – площадь сечения горловины диффузора, (м2);
1 – площадь сечения сопла, (м).
Параметры струйных насосов зависят от конструктивных особенностей, рода и температуры рабочей жидкости, шероховатости поверхностей и во многом от соотношения площадей 1 и 2.
Водоструйные насосы
Водоструйные насосы в пожарной технике применяются для забора и подачи из открытого водоисточника дополнительного количества воды, а так же в качестве смесителей при необходимости получения раствора пенообразующего вещества или смачивателя в воде.
Представителем первого из них является гидроэлеватор Г-600А, второго – стационарные (ПС-5, ПС-12) и переносные (ПС-1, ПС-2, ПС-3) пенные смесители.
Назначение, т.т.х., устройство и работа гидроэлеватора Г-600.
Назначение и устройство
Предназначен для забора воды из открытых водоисточников, которые находятся ниже уровня насоса до 20 м и удалены от пожарного автомобиля на расстояние до 100м. Гидроэлеватор может забирать воду из водоисточников с небольшой глубиной (5...10см). Это свойство гидроэлеваторов позволяет использовать их для откачки воды, пролитой при тушении пожара.
Гидроэлеватор Г-600
1 -колено; 2-камера; 3 -решетка; 4 –сопло; 5- диффузор; 6-головка
соединительная ГМ-80; 7-головка соединительная ГМ-70
Гидроэлеватор Г-600 состоит из корпуса, на котором шпильками закреплены колено 1 и диффузор 5 со смесительной камерой. Внутри корпуса установлен
конический насадок 4, через который проходит поток рабочей жидкости, подаваемой от центробежного насоса ПА. Эжектируемая жидкость из открытого водоисточника через всасывающую сетку 3 поступает в вакуумную камеру и далее вместе с потоком рабочей жидкости перемещается в смесительную камеру и диффузор. Для соединения гидроэлеватора пожарными рукавами предусмотрены на колене гидроэлеватора и диффузора муфтовые соединительные головки.
Техническая характеристика гидроэлеватора Г-600
Производительность при давлении в напорной линии перед гидроэлеватором 0,8 МПа (8 кгс/см2),
л/мин, не менее ...........……………………………. 600
Рабочий расход воды при давлении 0,8 МПа
(8 кгс/см2), л/мин ..........…………………………... 550
Рабочее давление, МПа (кгс/см2) . . . . . ………. 0,2...1,2
Давление за гидроэлеватором при производительности 600 л/мин, не менее ......………………………….. 0,17
Наибольшая высота подъема подсасываемой воды, м, при рабочем давлении, МПа:
1,2 (12 кгс/см2) ....…………………………………. 19
0,2 (2 кгс/см2) ....…………………………………... 15
Условный проход, мм, патрубка:
входного ..………………………………………....... 70
выходного ............………………………………….. 80
Забор и подачу воды Г-600 осуществляют в следующем порядке:
· установить АЦ и собрать рукавную линию по схеме, устранить резкие перегибы в рукавах, в цистерну через люк опустить напорно-всасывающий рукав и для устранения резких перегибов закрепить его рукавной задержкой;
· выжав сцепление, включить коробку отбора мощности на насос и плавно отпустить педаль сцепления;
· выключить сцепление рычагом из насосного отсека;
открыть одну напорную задвижку на насосе (к гидроэлеватору) и задвижку на трубопроводе от цистерны;
остальные задвижки и краны должны быть закрыты;
· включить сцепление;
· рычагом «Газ» увеличить частоту вращения вала насоса до 2000 об/мин;
· при возвращении воды от гидроэлеватора в цистерну открыть задвижку на напорном коллекторе насоса (к стволу);
· установить необходимый напор на насосе (70...80м);
· следить за уровнем воды в цистерне и регулировать его открыванием (закрыванием) задвижки на напорном коллекторе насоса (к стволу) и частотой вращения вала насоса рукояткой «Газ».
Гидроэлеватор Г-600 обеспечивает работу одного ствола со спрыском диаметром 19 мм или трех стволов со спрыском диаметром 13 мм.
В случаях когда необходимо подавать воду на тушение пожаров через два ствола (расход до 10 л/с), а диаметр трубопровода из цистерны в насос недостаточен для поддержания уровня воды в емкости и стабильной работы насосной установки, необходимо всасывающий рукав от насоса опустить в емкость через люк (рис. 1).
Рис 1.
Для насосов ПН-40 и ПН-30 в этом случае достаточно использовать водосборник, на один патрубок которого установлена заглушка, а к другому подсоединен рукав от гидроэлеватора (рис.2).
Рис 2.
Во время запуска вакуумный клапан должен быть открыт для выпуска воздуха. После запуска такой системы необходимо закрыть задвижку от цистерны, и затем подать воду к стволам.
В некоторых случаях устанавливают разветвление перед водосборником, через которое выпускают воздух при запуске системы, воздух в насос не попадает, что ускоряет запуск системы.
При подаче воды на пожар в количестве 10...20 л/с используют два гидроэлеватора, включаемые параллельно (рис. г, д). Запускают в работу гидроэлеваторы поочередно: сначала один, потом другой (рис. 3).
Рис.3
Наиболее характерными ошибками при работе с гидроэлеваторами являются:
· перекручивание и перегибы рукавов при прокладке рукавных линий;
· резкое открывание напорных задвижек при подаче воды к стволам;
· снижение давления в рукавной линии от гидроэлеватора к водосборнику на всасывающей полости насоса;
· при использовании водосборника подача воды к стволам при открытой задвижке на трубопроводе от емкости цистерны;
· неполное открывание напорной задвижки на насосе при подаче воды к гидроэлеватору при запуске;
· превышение предельного расстояния до водоисточника.
При использовании гидроэлеваторов для забора и подачи воды к пожару необходимо знать количество воды, необходимое для запуска системы. Воды в емкости должно быть достаточно для заполнения всей рукавной системы до гидроэлеватора и от него к насосу. С учетом продолжительности запуска системы расчетный объем воды должен быть с коэффициентом запаса не менее двух.
Данные по объему воды в одном пожарном рукаве длиной 20 м при диаметре рукава: 51 мм - 40 л; 66 мм - 70 л и 77 мм - 95 л.
При техническом обслуживании гидроэлеваторов необходимо проверять; наличие и исправность резиновых прокладок в соединительных головках; крепление и чистоту решеток во всасывающем отверстии; плотность фланцевых соединений и затяжку гаек; чистоту отверстия конического насадка.
Пеносмесители
В пожарной технике используются пеносмесители двух типов: предвключенные и проходные. К предвключенным относятся стационарные пеносмесители ПС-5 и ПС-12, устанавливаемые на пожарных насосах. Схема установки этих пеносмесителей представлена на рис.4.
Рис.4. Принципиальная схема установки
пеносмесителей и водопенных коммуникаций:
1 – пожарный насос; 2 – пеносмеситель;
3 – пенобак; 4 – цистерна
Пеносмеситель устанавливается на всасывающем патрубке насоса. Сопло смесителя с помощью трубопровода соединено с напорным коллектором насоса. Смесительная камера струйного насоса пеносмесителя через пробковый кран, имеющий несколько калиброванных отверстий, связана с цистерной и пенобаком.
Как следует из приведенной схемы, рабочая жидкость под давлением поступает из напорной полости насоса к соплу пеносмесителя 2 и далее через диффузор во всасывающую полость насоса 1. Дозировка пенообразователя, подсасываемого в кольцевое пространство сопла из пенобака 3 или цистерны 4, осуществляется дозатором, конструктивно соединенным со смесительной камерой струйного насоса. Подача раствора к пенным стволам или пеногенераторам регулируется напором насоса.
При работе предвключенных пеносмесителей часть подачи насоса (до 25%) расходуется на работу пеносмесителя. Дозаторы на пеносмесителях бывают ручные или автоматические. При ручной дозировке пробковым краном имеет место не соответствие между количеством воды, проходимой через смеситель, и пенообразователя, т.е. изменяется процентное соотношение пенообразователя и воды в подаваемом растворе при изменении давления на насосе. Это приводит к снижению качества воздушно-механической пены. В связи с этим автоматические дозаторы более предпочтительны.
К проходным пеносмесителям относятся переносные смесители ПС-1, ПС-2 и ПС-3. Они устанавливаются непосредственно в напорных магистральных или рабочих рукавных линиях. Пенообразователь к смесителю подается по шлангу из посторонней емкости. Достоинством таких смесителей является возможность получения небольшого количества воздушно-механической пены с малыми затратами пенообразователя за счет снижения его потерь в рукавных линиях, т.к. смеситель может быть установлен в непосредственной близости от пенного ствола или пеногенератора.
Схема пеносмесителя ПС-5 представлена на рис.5. Он состоит из корпуса 1, дозатора 2, пробки дозатора 3, обратного клапана 4, сопла 5, диффузора 6. Дозатор 2 осуществляет регулировку подачи пенообразователя в пяти рабочих положениях пробки крана 3. Цифры на шкале пеносмесителя обозначают число пеногенераторов ГПС-600, работающих от данного насоса. Для подачи пенообразователя маховичок пробки крана поварачивают до совпадения стрелки с нужным делением шкалы. Обратный клапан 4 служит для предотвращения попадания воды в емкость с пенообразователем при работе насоса от водопроводной линии. Во время работы насоса с пеносмесителем напор на насосе должен быть 0,7-0,8 МПа, подпор во всасывающей линии при работе от водопроводной сети - не более 0,25 МПа.
Рис.5. Схема пеносмесителя ПС-5:
1 – корпус; 2 – дозатор; 3 – пробка крана; 4 – обратный клапан; 5 – сопло; 6 - диффузор
Пеносмеситель ПС-12 устанавливается на пожарном насосе ПН-110Б. Максимальная подача пенообразователя 4,3 л/с, что обеспечивает одновременную работу 12 пеногенераторов ГПС-600. Напор перед смесителем во время работы должен быть не менее 0,75 МПа, подпор во всасывающей линии – не более 0,15 МПа. Принципиальная схема пеносмесителя ПС-12 аналогична ранее приведенной.
Дозатор смесителя выполнен в виде ступенчатой пробки, имеющей три фиксированных положения: на 6, 9 и 12 пеногенераторов ГПС-600. Фиксация стержня обеспечивается подпружиненным шариком, а перемещение – рычагом. На лыске стержня нанесены цифры, указывающие положение дозатора. Конструкция переносного смесителя (ПС) представлена на рис.6. Известны три марки переносных смесителей ПС-1, ПС-2, ПС-3. Где цифра означает количество одновременно подключаемых пеногенераторов ГПС-600. Каждый из ПС представляет собой струйный насос, состоящий из сопла, диффузора и вакуум-камеры, отлитых из алюминиевого сплава АЛ-9В.
Рис.6. Схема переносного смесителя:
1 – сопло; 2 – диффузор; 3 – вакуум-камера;
4 – обратный клапан
В камеру ввернут штуцер с шариковым обратным клапаном. К штуцеру с помощью накидной гайки присоединен резиновый шланг для подачи пенообразователя. Техническая характеристика переносных смесителей представлена в таблице 1.
Таблица 1
Наименование параметров | Тип смесителя | ||
ПС-1 | ПС-2 | ПС-3 | |
Напор перед смесителем, МПа | 0,7-1,0 | 0,7-1,0 | 0,7-1,0 |
Предельный напор за пеносмесителем, МПа | 0,45-0,65 | 0,45-0,65 | 0,45-0,65 |
Подача раствора пенообразователя, л/с | 5-8 | 10-12 | 15-18 |
Условный проход шланга, мм | |||
Масса, кг | 4,5 | 6,0 | 5,9 |
Газоструйные насосы
Газоструйные насосы в пожарной технике нашли применение в качестве вакуумных аппаратов для создания разряжения во всасывающей рукавной линии и в центробежном насосе. Работают от выхлопных газов двигателей пожарных автомобилей, а на мотопомпе МП-800Б – на воздухе, подаваемом одним из цилиндров двигателя, работающем при включении вакуум-аппарата как компрессор. В связи с изложенным, все газоструйные аппараты на всех отечественных эксплуатирующихся пожарных автомобилях устанавливаются на выхлопных тракторах двигателей перед глушителем.
Конструктивно большинство газоструйных вакуумных аппаратов отличаются незначительно.
Назначение – первоначальное заполнение насоса и всасывающей линии водой при работе из водоема осуществляется вакуумной системой, состоящей из вакуумного струйного насоса, установленного на выхлопной линии автомобиля, вакуумного затвора, установленного в верхней части насоса, трубопроводов и рычагов управления.
Вакуумный затвор служит для соединения полости насоса с камерой разрежения диффузора вакуумного струйного насоса при отсасывании воздуха из полости насоса.
При повороте до упора на себя рукоятки 8 (рис. 7) кулачок валика открывает нижний клапан 12 (верхний клапан 7 закрыт) и соединяет полость насоса с камерой разрежения вакуумного струйного насоса. При включении вакуумного затвора кулачок валика открывает верхний клапан (нижний клапан закрыт) и соединяет трубопровод, идущий к вакуумному струйному насосу, с атмосферой через отверстие, имеющееся в корпусе вакуумного затвора, что способствует быстрому сливу воды .из трубопровода.
Блок вакуумного струйного насоса и газовой сирены служит для создания в камере диффузора разрежения и получения сигнала тревоги.
Газовая сирена включается из кабины водителя рычагом 1 (рис. 2) через систему тяг 4 и рычаг 5 (рис. 3). В обычном положении заслонки прижаты пружиной к своим седлам и выхлопные газы проходят свободно по трубопроводам. При включении сирены заслонка 3 перекрывает прямое движение выхлопных газов, и они попадают через распределитель в резонатор /. Положение заслонки фиксируется «рычагом и давлением выхлопных газов.
Рис. 7. Затвор вакуумный:
1-глазок; 2-упор рукоятки; 3-корпус электролампочки; 4, 6, 11-гайка; 5-корпус; 7-клапан верхний; 8-рукоятка; 9-уплотнитель; 10-улачковый валик; 12-клапан нижний; 13-пружина
Рис. 8. Выхлопная и вакуумная системы:
1-рычаг 2-щиток теплоотражательный; 3-приемная труба двигателя; 4 -тяга сирены; 5-блок вакуумного струйного насоса и газовой сирены; 6-глущитель; 7-заглушка; 8-патрубок; 9-трубопровод; 10-труба; 11-батарея; 12-затвор вакуумный
Рис. 9. Блок вакуумного струйного насоса и газовой сирены:
1-резонатор; 2-распределитель; 3, 12заслонки; 4-корпус; 5, 8-рычаги;
6-ось; 7-крышка; 9-пружина; 10-сопло; 11-диффузор
К нижнему патрубку корпуса через прокладку закреплен диффузор 11 с соплом 10.
Включение вакуумного струйного насоса из насосного отделения производится рычагом 8 (см. рис. 10) через систему тяг 5. При включении заслонки 12 (рис. 10), перекрывается прямое движение выхлопных газов и они попадают в сопло и далее через диффузор в атмосферу.
Камера разрежения соединена через трубу и вакуумный затвор с внутренней полостью насоса.
Чтобы включить вакуумную систему, необходимо открыть вакуумный затвор, включить вакуумный струйный насос и увеличить обороты двигателя. Когда вода заполнит всасывающий рукав, насос и появится в глазке 1 (рис. 7) вакуумного затвора, необходимо закрыть затвор, снизить обороты и включить вакуумный струйный насос.
Рис. 10. Система управления двигателем и вакуумным струйным насосом:
1-педаль сцепления; 2- педаль управления дроссельной заслонкой; 3-трос; 4, 14—тяга сцепления; 5-тяга включения вакуумного струйного насоса; 6-тяга дроссельной заслонки; 7-рычаг привода дроссельной заслонки двигателя; 8-рычаг вакуумного струйного насоса; 9-пневмораспределитель; 10, 13-качалка; 11-пневмоцилиндр; 12-трубопровод; I—подвод воздуха