Явление фотоэффекта, его законы

Введение

Многочисленные оптические явления непротиворечиво объясняли, исходя из представлений о волновой природе света. Однако в конце XIX – начале XX в. были открыты и изучены такие явления, как фотоэффект, рентгеновское излучение, эффект Комптона, излучение атомов и молекул, тепловое излучение и другие, объяснение которых с волновой точки зрения оказалось невозможным. Объяснение новых экспериментальных фактов было получено на основе корпускулярных представлений о природе света. Возникла парадоксальная ситуация, связанная с применением совершенно противоположных физических моделей волны и частицы для объяснения оптических явлений. В одних явлениях свет проявлял волновые свойства, в других – корпускулярные.

Среди разнообразных явлений, в которых проявляется воздействие света на вещество, важное место занимает фотоэлектрический.

Фотоэффект был объяснён в 1905 году Альбертом Эйнштейном (за что в 1921 году он получил Нобелевскую премию) на основе гипотезы Макса Планка о квантовой природе света. В работе Эйнштейна содержалась важная новая гипотеза – если Планк предположил, что свет излучается только квантованными порциями, то Эйнштейн уже считал, что свет и существует только в виде квантовых порций. Из представления о свете как о частицах (фотонах) немедленно следует формула Эйнштейна для фотоэффекта: Явление фотоэффекта, его законы - student2.ru

Законы фотоэффекта:

Формулировка 1-го закона фотоэффекта: Сила фототока прямо пропорциональна плотности светового потока.

Согласно 2-му закону фотоэффекта, максимальная кинетическая энергия вырываемых светом электронов линейно возрастает с частотой света и не зависит от его интенсивности.

3-й закон фотоэффекта: для каждого вещества существует красная граница фотоэффекта, то есть минимальная частота света (или максимальная длина волны λ0), при которой ещё возможен фотоэффект, и если , то фотоэффект уже не происходит.

Для фотоэлементов с внешним фотоэффектом (вакуумных фотоэлементов) необходимо знание следующих характеристик: рабочая область спектра; относительная характеристика спектральной чувствительности (она строится как зависимость от длины волны падающего света безразмерной величины отношения спектральной чувствительности при монохроматическом освещении к чувствительности в максимуме этой характеристики); интегральная чувствительность (она определяется при освещении фотоэлемента стандартным источником света); величина квантового выхода (процентное отношение числа эмитированных фотоэлектронов к числу падающих на фотокатод фотонов); инерционность (для вакуумных фотоэлементов она определяется обычно через время пролета электронов от фотокатода к аноду.

Внешний фотоэффект: Явление фотоэффекта, его законы - student2.ru

Строение атомного ядра.

Явление фотоэффекта, его законы - student2.ru

Открытие атомного ядра.

Уподобление атома планетной системе делалось еще в начале XX века. Но эту модель было трудно совместить с моделями электродинамики, и она была оставлена, уступив место модели Томсона. Однако в 1904 году начались исследования, приведшие к утверждению планетарной модели.

При изучении a-частиц Резерфорд, исходя из модели Томсона, подсчитал, что рассеивание a-частиц не может давать больших углов отклонений даже при многих столкновениях с частицей. И здесь Резерфорд обратился к планетарной модели.

7 марта 1911 года Резерфорд сделал в философском обществе в Манчестере доклад “Рассеяние a и b-лучей и строение атома”. В докладе он, в частности, говорил: “Рассеяние заряженных частиц может быть объяснено, если предположить такой атом, который состоит из центрального электрического заряда, сосредоточенного в точке и окруженного однородным сферическим распределением противоположного электричества равной величины. При таком устройстве a и b-частицы, когда они проходят на близком расстоянии от центра атома, испытывают большие отклонения, хотя вероятность такого отклонения мала”.

Важным следствием теории Резерфорда было указание на заряд атомного центра, который Резерфорд положил равным ±Ne. Заряд оказался пропорциональным атомному весу.

Заряд ядра оказался важнейшей характеристикой атома. В 1913 году было показано, что заряд ядра совпадает с номером элемента в таблице Менделеева.

Основные свойства и строение ядра.

Явление фотоэффекта, его законы - student2.ru

1. Ядром называется центральная часть атома, в которой сосредоточена практически вся масса атома и его положительный электрический заряд. Все атомные ядра состоят из элементарных частиц: протонов и нейтронов, которые считаются двумя зарядовыми состояниями одной частицы - нуклона. Протон имеет положительный электрический заряд, равный по абсолютной величине заряду электрона. Нейтрон не имеет электрического заряда.

Масса нейтрона mn=1838,6 электронных масс, масса протона mp= 1836,1 электронных масс, mn > mp приблизительно на 2,5 массы электрона.

2. Зарядом ядра называется величина Ze, где е - величина заряда протона, Z - порядковый номер химического элемента в периодической системе Менделеева, равный числу протонов в ядре.

3. Число нуклонов в ядре A=N+Z называется массовым числом. Нуклонам (протону и нейтрону) приписывается массовое число, равное единице, электрону - нулевое значение А.

Ядра с одинаковыми Z, но различными А называются изотопами. Ядра, которые при одинаковом А имеют различные Z, называются изобарами. Ядро химического элемента X обозначается Х - символ химического элемента.

Всего известно около 300 устойчивых изотопов химических элементов и более 2000 естественных и искусственно полученных радиоактивных изотопов.

Радиоактивность

Явление радиоактивности было открыто в 1896 году французским ученым Анри Беккерелем. В настоящее время оно широко используется в науке, технике, медицине, промышленности. Радиактивные элементы естественного происхождения присутствуют повсюду в окружающей человека среде. В больших объемах образуются искусственные радионуклиды, главным образом в качестве побочного продукта на предприятиях оборонной промышленности и атомной энергетики. Попадая в окружающую среду, они оказывают воздействия на живые организмы, в чем и заключается их опасность. Для правильной оценки этой опасности необходимо четкое представление о масштабах загрязнения окружающей среды, о выгодах, которые приносят производства, основным или побочным продуктом которых являются радионуклиды, и потерях, связанных с отказом от этих производств, о реальных механизмах действия радиации, последствиях и существующих мерах защиты.

Радиоактивность - неустойчивость ядер некоторых атомов, проявляющаяся в их способности к самопроизвольным превращениям (распаду).

Мерой радиоактивности служит активность. Измеряется в Беккерелях (Бк), что соответствует 1 распаду в секунду. Содержание активности в веществе часто оценивают на единицу веса вещества (Бк/кг) или объема (Бк/куб.м). Также встречается еще такая единица активности, как Кюри (Ки). Это - огромная величина: 1 Ки = 37000000000 Бк. Активность радиоактивного источника характеризует его мощность. Так, в источнике активностью 1 Кюри происходит 37000000000 распадов в секунд. Как было сказано выше, при этих распадах источник испускает ионизирующее излучения. Мерой ионизационного воздействия этого излучения на вещество является экспозиционная доза. Часто измеряется в Рентгенах (Р). Поскольку 1 Рентген - довольно большая величина, на практике удобнее пользоваться миллионной (мкР) или тысячной (мР) долями Рентгена. Действие распространенных бытовых дозиметров основано на измерении ионизации за определенное время, то есть мощности экспозиционной дозы. Единица измерения мощности экспозиционной дозы – микроРентген/час. Мощность дозы, умноженная на время, называется дозой. Мощность дозы и доза соотносятся так же как скорость автомобиля и пройденное этим автомобилем расстояние (путь).

Число радиоактивных ядер одного типа постоянно уменьшается во времени благодаря их распаду.

Скорость распада принято характеризовать периодом полураспада: это время, за которое число радиоактивных ядер определенного типа уменьшится в 2 раза.

Абсолютно ошибочной является следующая трактовка понятия "период полураспада": "если радиоактивное вещество имеет период полураспада 1 час, это значит, что через 1 час распадется его первая половина, а еще через 1 час - вторая половина, и это вещество полностью исчезнет (распадется)".

КОРПУСКУЛЯРНО-ВОЛНОВОЙ ДУАЛИЗМ - важнейшее универсальное свойство природы, заключающееся в том, что всем микрообъектам присущи одновременно и корпускулярные и волновые характеристики. Так, например электрон, нейтрон, фотон в одних условиях проявляются как частицы, движущиеся по классическим траекториям и обладающие определенной энергией и импульсом, а в других - обнаруживают свою волновую природу, характерную для явлений интерференции и дифракции частиц. В качестве первичного принципа К--в. д. лежит в основе квантовой механики и квантовой теории поля.

Как классический пример, свет можно трактовать как поток корпускул (фотонов), которые во многих физических эффектах проявляют свойства электромагнитных волн. Свет демонстрирует свойства волны в явлениях дифракции и интерференции при масштабах, сравнимых с длиной световой волны. Например, даже одиночные фотоны, проходящие через двойную щель, создают на экране интерференционную картину, определяемую уравнениями Максвелла[1].

Тем не менее, эксперимент показывает, что фотон не есть короткий импульс электромагнитного излучения, например, он не может быть разделён на несколько пучков оптическими делителями лучей, что наглядно показал эксперимент, проведённый французскими физиками Гранжье, Роже и Аспэ в 1986 году[2]. Корпускулярные свойства света проявляются при фотоэффекте и в эффекте Комптона. Фотон ведет себя и как частица, которая излучается или поглощается целиком объектами, размеры которых много меньше его длины волны (например, атомными ядрами), или вообще могут считаться точечными (например, электрон).

Корпускулярно-волновая двойственность света

Такие явления, как интерференция и дифракция света, убедительно свидетельствуют о волновой природе света. В то же время закономерности равновесного теплового излучения, фотоэффекта и эффекта Комптона можно успешно истолковать с классической точки зрения только на основе представлений о свете, как о потоке дискретных фотонов. Однако волновой и корпускулярный способы описания света не противоречат, а взаимно дополняют друг друга, так как свет одновременно обладает и волновыми и корпускулярными свойствами.

Волновые свойства света играют определяющую роль в закономерностях его интерференции, дифракции, поляризации, а корпускулярные — в процессах взаимодействия света с веществом. Чем больше длина волны света, тем меньше импульс и энергия фотона и тем труднее обнаружить корпускулярные свойства света. Например, внешний фотоэффект происходит только при энергиях фотонов, больших или равных работе выхода электрона из вещества. Чем меньше длина волны электромагнитного излучения, тем больше энергия и импульс фотонов и тем труднее обнаружить волновые свойства этого излучения. Например, рентгеновское излучение диафрагмирует только на очень «тонкой» дифракционной решетке — кристаллической решетке твердого тела.

Боровская модель атома водорода — промежуточная (между классической физикой и квантовой физикой) модель простейшего атома, предложенная Нильсом Бором для объяснения наблюдаемых свойств атомов водорода. В ней объединены классические представления о взаимодействии заряженных частиц, и постулируется наличие некоторых свойств атома.

Явление фотоэффекта, его законы - student2.ru

В основе боровской теории атома лежат два основных положения (постулата):

1. Электроны могут двигаться в атоме только по определенным орбитам, находясь на которых они, несмотря на наличие у них ускорения, не излучают.

Бор предположил, что произведение модуля импульса на радиус орбиты кратно постоянной Планка:

Явление фотоэффекта, его законы - student2.ru

где n = 1,2,3,… это и есть правило квантования. С помощью правила квантования можно получить выражение для возможных радиусов орбит:

Явление фотоэффекта, его законы - student2.ru

2. Атом излучает или поглащает квант электромагнитной энергии при переходе электрона из одного стационарного состояние в другое.

Радиусов допустимых (стационарных) орбит электрона в атоме водорода:

Явление фотоэффекта, его законы - student2.ru

В этой модели предполагается, что точечная частица — электрон — движется вокруг точечного положительно заряженного ядра по траектории в форме эллипса и при этом не излучает электромагнитных волн. Постулируется, что только некоторые возможные орбиты движения являются разрешенными. Для таких орбит момент количества движения атома имеет вполне определенные значения, кратные кванту действия — постоянной Планка. Переход электрона с одной разрешенной орбиты на другую происходит с поглощением или потерей энергии атомом в виде порции электромагнитной энергии — кванта света.

В этой модели у атома водорода существует орбита электрона, для которой суммарная энергия (потенциальная и кинетическая) атома является самой низкой. С этой орбиты электрону можно переходить только на более «энергичные» орбиты. Находиться на этой самой «низкоэнергичной» орбите электрон может неограниченно долго.

Эта модель объясняет основные особенности спектров излучения и

поглощения атомарного

водорода: наличие спектральных линий и группировку их в серии.

О люминесценции

Общая характеристика

«Будем называть люминесценцией избыток над температурным излучением тела в том случае, если это избыточное излучение обладает конечной длительностью примерно 10 секунд и больше». Таково каноническое определение люминесценции, данное русским учёным С. И. Вавиловым в 1948 году. Это значит, что яркость люминесцирующего объекта в спектральном диапазоне волн его излучения существенно больше, чем яркость абсолютно чёрного тела в этом же спектральном диапазоне, имеющего ту же температуру, что и люминесцирующее тело.

Первая часть определения позволяет отличить люминесценцию от теплового излучения, что особенно важно при высоких температурах, когда термоизлучение приобретает большую интенсивность. Важной особенностью люминесценции является то, что она способна проявляться при значительно более низких температурах, так как не использует тепловую энергию излучающей системы. За это люминесценцию часто называют «холодным свечением». Критерий длительности, введённый Вавиловым, позволяет отделить люминесценцию от других видов нетеплового излучения: рассеяния и отражения света, комбинационного рассеяния, излучения Черенкова. Длительность их меньше периода колебания световой волны.

Физическая природа люминесценции состоит в излучательных переходах электронов атомов или молекул из возбуждённого состояния в основное. При этом причиной первоначального их возбуждения могут служить различные факторы: внешнее излучение, температура, химические реакции и др.

Вещества, имеющие делокализованные электроны (сопряжённые системы), обладают самой сильной люминесценцией. Антрацен, нафталин, белки, содержащие ароматические аминокислоты и некоторые простетические группы, многие пигменты растений и в частности хлорофилл, а также ряд лекарственных препаратов обладают ярко выраженной способностью к люминесценции. Органические вещества, способные давать люминесцирующие комплексы со слабо люминесцентными неорганическими соединениями, часто используются в люминесцентном анализе. Так, в люминесцентной титриметрии часто применяется вещество флуоресцеин.

Первоначально понятие люминесценция относилось только к видимому свету. В настоящее время оно применяется к излучению в инфракрасном, видимом, ультрафиолетовом и рентгеновском диапазонах (см. шкала электромагнитных волн).

Многие формы природной люминесценции были известны людям очень давно. Например, свечение насекомых (светлячки), свечение морских рыб и планктона, полярные сияния, свечение минералов, гниющего дерева и других разлагающихся органических веществ. В настоящее время к природным формам прибавилось много искусственных способов возбуждения люминесценции. Твердые и жидкие вещества, способные люминесцировать, называют люминофорами (от лат. lumen — свет и др.-греч. phoros — несущий).

Чтобы вещество было способно люминесцировать, его спектры должны иметь дискретный характер, то есть его энергетические уровни должны быть разделены зонами запрещенных энергий. Поэтому металлы в твёрдом и жидком состоянии, обладающие непрерывным энергетическим спектром, не дают люминесценции. Энергия возбуждения в металлах непрерывным образом переходит в тепло. И лишь в коротковолновом диапазоне металлы могут испытывать рентгеновскую флуоресценцию, то есть под действием рентгеновского излучения испускать вторичные Х-лучи.

Типы люминесценции

Люминесцентное свечение тел принято делить на следующие виды:

фотолюминесценция — свечение под действием света (видимого и УФ-диапазона). Она, в свою очередь, делится на

флуоресценцию

фосфоресценцию

хемилюминесценция — свечение, использующее энергию химических реакций;

катодолюминесценция — вызвана облучением быстрыми электронами (катодными лучами);

сонолюминесценция — люминесценция, вызванная звуком высокой частоты;

рентгенолюминесценция — свечение под действием рентгеновских лучей.

радиолюминесценция — при возбуждении вещества излучением;

триболюминесценция — люминесценция, возникающая при растирании, раздавливании или раскалывании люминофоров. Триболюминесценция вызывается электрическим разрядами, происходящими между образовавшимися наэлектризованными частями — свет разряда вызывает фотолюминесценцию люминофора.

электролюминесценция- возникает при пропускании электрического тока через определенные типы люминофоров.

Кандолюминесценция — калильное свечение.

В настоящее время наиболее изучена фотолюминесценция.

У твердых тел различают три вида люминесценции:

мономолекулярная люминесценция — акты возбуждения и испускания света происходят в пределах одного атома или молекулы;

метастабильная люминесценция — акты возбуждения и испускания света происходят в пределах одного атома или молекулы, но с участием метастабильного состояния;

рекомбинационная люминесценция — акты возбуждения и испускания света происходят в разных местах.

Ядерные реакции

ЯДЕРНЫЕ РЕАКЦИИ - превращения атомных ядер при взаимодействии с др. ядрами, элементарными частицами или квантами. Ядерные реакции осуществляют под действием налетающих, или бомбардирующих, частиц, которыми облучают более тяжелые ядра. Первая ядерная реакция была осуществлена Э. Резерфордом, в 1919 г.

Радиоактивные превращения атомных ядер

В результате атомного превращения образуется вещество совершенно нового вида, полностью отличное по своим физическим и химическим свойствам от первоначального вещества.

В 1903 г. Появилась совместная работа Э. Резерфорда и Ф. Содди об изучении радиоактивности радия

Новый материал

1) 1903г. – Эрнест Резерфорд и Фредерик Содди обнаружили, что радий в процессе α-распада превращается в другой химический элемент – радон. Они отличаются по своим физическим и химическим свойствам. Радий – металл, а радон – инертный газ.

2) Дальнейшие опыты показали, что и при β-распаде происходит превращение одного химического элемента в другой.

3) После того, как Э. Резерфорд в 1911г. предложил ядерную модель атома (положительно заряженное ядро и движущиеся вокруг него электроны), стало очевидным, что именно ядро претерпевает изменения при радиоактивных превращениях.

4) Реакция α-распада ядро атома радия с превращением его в ядро атома радона записывается так:

Здесь в левой части стоит ядро атома радия, а в правой части – сумма ядер атомов радона и гелия (α-частица).

5) Число, стоящее перед буквенным обозначением ядра сверху, называется массовым числом, а снизу – зарядовым числом (или атомным номером).

6) Массовое число ядра атома данного химического элемента с точностью до целых чисел равно числу атомных единиц массы, содержащихся в массе этого ядра.

7) Зарядовое число ядра атома данного химического элемента равно числу элементарных электрических зарядов, содержащихся в заряде этого ядра.

Можно сказать и так:

Зарядовое число равно заряду ядра, выраженному в элементарных электрических зарядах.

Оба этих числа – массовое и зарядовое – всегда целые и положительные. Они не имеют никакого наименования, поскольку указывают, во сколько раз масса и заряд ядра больше единичных.

Явление фотоэффекта, его законы - student2.ru

У ядра радия:

1)Массовое число равно 226,

2)Зарядовое число равно 88.

Ядро атома радия при излучении им α-частицы теряет приблизительно 4 атомные единицы массы и 2 элементарных заряда, превращаясь в ядро атома радона.

8) В процессе радиоактивного распада выполняются законы сохранения массового числа и заряда.

1.Массовое число 226 равно сумме массовых чисел 222 и 4,

2.Зарядовое число 88 равно сумме зарядовых чисел 86 и 2.

9) Таким образом, из открытий Резерфорда и Содди можно сделать вывод:

1. Ядра атомов имеют сложный состав;

2. Радиоактивность – это способность некоторых атомных ядер самопроизвольно превращаться в другие ядра с испусканием частиц

Запомни и запиши!!!

Правила смещения

Ф. Содди

1. XAZ= YA-4Z-2+ He42

2. XAZ= YAZ+1+ e0-1

ДЕЛЕНИЕ ЯДЕР УРАНА

В 1939г. - было открыто деление ядер урана при бомбардировке их нейтронами учеными Отто Ганом и Фрицем Шрассманом.

Явление фотоэффекта, его законы - student2.ru

Атом урана, поглотив нейтрон, возбуждается , деформируется ( ядро вытягивается, ядерные силы ослабевают при увеличениии расстояний между нуклонами) и разрывается на две части с излучением при этом 2-3 нейтронов.


Явление фотоэффекта, его законы - student2.ru


Поглощая нейтрон, ядро урана получает необходимую энергию для преодоления ядерных сил притяжения между нуклонами, при этом внутренняя энергия ядра увеличивается.
При распаде внутренней энергии переходит в кинетическую энергию осколков, а затем за счет торможения их во внутреннюю энергию окружающей среды.
Реакция деления ядер урана идет с преобладающим выделением энергии. в окружающую среду.


Справочные данные берем из таблицы относительных атомных масс некоторых изотопов
(табл.13 - задачник Рымкевича).

ЗНАЕШЬ ЛИ ТЫ ?

Самая мощная водородная бомба была взорвана 40 лет назад. Утром 30 октября в 11 ч. 32 мин. над Новой Землей в районе Губы Митюши на высоте 4000 м над поверхностью суши была взорвана водородная бомба мощностью в 50 млн. т. тротила. Явление фотоэффекта, его законы - student2.ru

Советский Союз провел испытание самого мощного в истории термоядерного устройства. Даже в "половинном" варианте (а максимальная мощность такой бомбы составляет 100 мегатонн) энергия взрыва десятикратно превышала суммарную мощность всех взрывчатых веществ, Самая мощная в мире экспериментальная бомба 100 мегатонн.использованных всеми воюющими сторонами за годы Второй мировой войны (включая атомные бомбы, сброшенные на Хиросиму и Нагасаки).

Явление фотоэффекта, его законы - student2.ru

Ударная волна от взрыва трижды обогнула земной шар, первый раз - за 36 ч. 27 мин. Световая вспышка была настолько яркой, что, несмотря на сплошную облачность, была видна даже с командного пункта в поселке Белушья Губа (отдаленном от эпицентра взрыва почти на 200 км). Грибовидное облако выросло до высоты 67 км.

Явление фотоэффекта, его законы - student2.ru

Самая мощная в мире экспериментальная бомба 100 мегатонн

ЯДЕР ДЕЛЕНИЕ


Энергия, выделяющаяся при делении ядер, превращается в теплоту при торможении осколков деления. Скорость тепловыделения зависит от числа ядер, делящихся в единицу времени. Когда в небольшом объеме за короткое время происходит деление большого числа ядер, то реакция имеет характер взрыва. Таков принцип действия атомной бомбы. Если же сравнительно небольшое число ядер делится в большом объеме в течение более длительного времени, то результатом будет выделение теплоты, которую можно использовать. На этом основаны атомные электростанции. На атомных электростанциях теплота, выделяющаяся в ядерных реакторах в результате деления ядер, используется для производства пара, который подается на турбины, вращающие электрогенераторы. Для практического использования процессов деления больше всего подходят уран и плутоний. У них имеются изотопы (атомы данного элемента с различными массовыми числами), которые делятся при поглощении нейтронов даже с очень небольшими энергиями. Энергия, высвобождаемая при делении ядер, в миллионы раз превышает энергию, выделяющуюся в таких химических процессах, как горение. Кроме того, полное количество энергии, которое можно извлечь за счет деления, гораздо больше энергии, которую можно получить в результате сжигания всех мировых запасов обычного топлива, такого, как уголь и нефть. В некоторых регионах, где уголь и нефть обходятся относительно дорого, стоимость электроэнергии, полученной за счет деления ядер, ниже, чем при сжигании ископаемого топлива. Этот экономический фактор наряду с доступностью больших запасов ядерного топлива привел к быстрому росту энергетики, основанной на делении ядер. Ядерные реакторы деления вносят значительный вклад в мировое производство электроэнергии. В середине 1980-х годов во всем мире работало более 500 атомных электростанций. В некоторых странах (например, во Франции) они обеспечивают более половины национального потребления электроэнергии. В США в конце века примерно 150 реакторов деления производили около 15% электроэнергии, потребляемой в стране.


ИСТОРИЧЕСКАЯ СПРАВКА
История открытия деления ядер берет начало с работы А. Беккереля (1852-1908). Исследуя в 1896 фосфоресценцию различных материалов, он обнаружил, что минералы, содержащие уран, самопроизвольно испускают излучение, вызывающее почернение фотопластинки даже если между минералом и пластинкой поместить непрозрачное твердое вещество. Различные экспериментаторы установили, что это излучение состоит из альфа-частиц (ядер гелия), бета-частиц (электронов) и гамма-квантов (жесткого электромагнитного излучения). Первое превращение ядер, искусственно вызванное человеком, осуществил в 1919 Э.Резерфорд, который превратил азот в кислород, облучив азот альфа-частицами урана. Эта реакция сопровождалась поглощением энергии, поскольку масса ее продуктов - кислорода и водорода - превышает массу частиц, вступающих в реакцию, - азота и альфа-частиц. Выделение же ядерной энергии впервые удалось осуществить в 1932 Дж. Кокрофту и Э. Уолтону, бомбардировавшим литий протонами. В этой реакции масса вступавших в реакцию ядер была несколько больше массы продуктов, в результате чего и происходило выделение энергии. В 1932 Дж. Чедвик открыл нейтрон - нейтральную частицу с массой, примерно равной массе ядра атома водорода. Физики всего мира занялись изучением свойств этой частицы. Предполагалось, что лишенный электрического заряда и не отталкиваемый положительно заряженным ядром нейтрон будет с большей вероятностью вызывать ядерные реакции. Более поздние результаты подтвердили эту догадку. В Риме Э.Ферми с сотрудниками подвергли облучению нейтронами почти все элементы периодической системы и наблюдали ядерные реакции с образованием новых изотопов. Доказательством образования новых изотопов служила "искусственная" радиоактивность в форме гамма и бета-излучений.


Первые указания на возможность деления ядер

Ферми принадлежит открытие многих нейтронных реакций, известных сегодня. В частности, он пытался получить элемент с порядковым номером 93 (нептуний), бомбардируя нейтронами уран (элемент с порядковым номером 92). При этом он регистрировал электроны, испускаемые в результате захвата нейтронов в предполагаемой реакции 238U + 1n -> 239Np + b-, где 238U - изотоп урана-238, 1n - нейтрон, 239Np - нептуний и b - - электрон. Однако результаты оказались неоднозначными. Чтобы исключить возможность того, что регистрируемая радиоактивность принадлежит изотопам урана или другим элементам, расположенным в периодической системе перед ураном, пришлось проводить химический анализ радиоактивных элементов. Результаты анализа показали, что неизвестным элементам соответствуют порядковые номера 93, 94, 95 и 96. Поэтому Ферми сделал вывод, что он получил трансурановые элементы. Однако О.Ган и Ф.Штрасман в Германии, проведя тщательный химический анализ, установили, что среди элементов, возникающих в результате облучения урана нейтронами, присутствует радиоактивный барий. Это означало, что, вероятно, часть ядер урана делится на два крупных осколка.


Подтверждение возможности деления.

После этого Ферми, Дж.Даннинг и Дж.Пеграм из Колумбийского университета провели эксперименты, которые показали, что деление ядер действительно имеет место. Деление урана нейтронами было подтверждено методами пропорциональных счетчиков, камеры Вильсона, а также накопления осколков деления. Первый метод показал, что при приближении источника нейтронов к образцу урана испускаются импульсы большой энергии. В камере Вильсона было видно, что ядро урана, бомбардируемое нейтронами, расщепляется на два осколка. Последний метод позволил установить, что, как и предсказывала теория, осколки радиоактивны. Все это вместе взятое убедительно доказывало, что деление действительно происходит, и давало возможность уверенно судить об энергии, выделяющейся при делении.
Поскольку допустимое отношение числа нейтронов к числу протонов в стабильных ядрах уменьшается с уменьшением размеров ядра, доля нейтронов у осколков должна быть меньше, чем у исходного ядра урана. Таким образом, были все основания предполагать, что процесс деления сопровождается испусканием нейтронов. Вскоре это было экспериментально подтверждено Ф. Жолио-Кюри и его сотрудниками: число нейтронов, испускаемых в процессе деления, было больше числа поглощенных нейтронов. Оказалось, что на один поглощенный нейтрон приходится приблизительно два с половиной новых нейтрона. Сразу стали очевидны возможность цепной реакции и перспективы создания исключительно мощного источника энергии и его использования в военных целях. После этого в ряде стран (особенно в Германии и США) в условиях глубокой секретности начались работы по созданию атомной бомбы.


Разработки в период Второй мировой войны

С 1940 по 1945 направление разработок определялось военными соображениями. В 1941 были получены небольшие количества плутония и установлен ряд ядерных параметров урана и плутония. В США важнейшие необходимые для этого производственные и научно-исследовательские предприятия были в ведении "Манхаттанского военно-инженерного округа", которому 13 августа 1942 был передан "Урановый проект".

В Колумбийском университете (Нью-Йорк) группой сотрудников под руководством Э.Ферми и В.Цинна были проведены первые эксперименты, в которых изучалось размножение нейтронов в решетке из блоков диоксида урана и графита - атомном "котле". В январе 1942 эта работа была перенесена в Чикагский университет, где в июле 1942 были получены результаты, показывавшие возможность осуществления самоподдерживающейся цепной реакции. Первоначально реактор работал на мощности 0,5 Вт, но спустя 10 дней мощность была доведена до 200 Вт. Возможность получения больших количеств ядерной энергии была впервые продемонстрирована 16 июля 1945 при взрыве первой атомной бомбы на полигоне в Аламогордо (шт. Нью-Мексико).


Атомная энергетика:
аргументы «за» и «против»

Сразу после аварии на японской АЭС «Фукусима-1» во всем мире обострилось обсуждение вопросов развития атомной энергетики. Во многих странах усилились антиядерные настроения, как среди граждан, так и среди политической и экономической элит. Япония уже заявила о полном поэтапном отказе от атомной энергетики в пользу возобновляемых источников энергии.

Напротив, сразу после катастрофы заместитель глав МАГАТЭ от России Александр Бычков заявил: «Из-за событий в Японии заказы на строительство АЭС, могут, только вырасти». Позже гендиректор «Росатома» Сергей Кириенко озвучил прогноз, заслуживающий большего доверия: «Общее количество сооружаемых в мире АЭС после событий на атомной станции "Фукусима-1" может снизиться на 30-35%, а конкуренция в атомной сфере станет жестче».

Действительно, ядерная катастрофа на «Фукусима-1» отрезвила многих сторонников атомной энергетики и нанесла ее репутации непоправимый ущерб. Для некоторых развитых стран, прежде всего Японии, Германии и Италии, это стало точкой в многолетней (после аварии на Чернобыльской АЭС) дискуссии о будущем их национальных программ в области ядерной энергетики.

Страны Балтии по-разному отреагировали на японскую ядерную катастрофу. Один из локомотивов мировой экономики Германия вначале объявила мораторий на продление эксплуатации 17 ядерных реакторов и временно остановила 8 наиболее старых реакторов, а позже заявила о том, что остановленные реакторы не будут вновь запущены. Согласно принятому Германией решению, все немецкие АЭС должны быть остановлены до конца 2022 года.

Официальная позиция России после японских событий не изменилась: ядерную энергетику нужно развивать, в том числе строить Балтийскую АЭС в Калининградской области. Белоруссия также продолжает готовиться к строительству собственной АЭС силами «Росатома» и на российский кредит.

Население Литвы очень скептически относится к идеям развития атомной отрасли: это государство находится на четвертом месте в мире среди стран, жители которых выступают против строительства атомных станций (первое принадлежит Германии, объявившей об отказе от создания новых АЭС). Впрочем, протестные настроения жителей ничуть не мешают правительству Литвы декларировать строительство собственной атомной станции – взамен закрытой в Игналине. Польша также изучает вопрос строительства собственной АЭС. В Финляндии, избегающей резких заявлений, продолжается затянувшееся строительство Олкилуото-3.

Основные споры по теме атомной энергетики идут вокруг ее безопасности, экологичности, экономики и социального фактора. В докладе в региональном разрезе либо на глобальном уровне рассматриваются аргументы «за» и «против» атомной энергетики в разрезе этих аспектов.

Безопасность

Безопасность АЭС – это главный критерий при решении вопроса о ее размещении. И в этом декларативно солидарны, как противники, так и сторонники развития атомной энергетики. Этот тезис красной линией проходит и в документах по ОВОС Балтийской АЭС.
Разница в подходах к оценке допустимого уровня опасности. Многие годы атомные корпорации и ведомства разных стран, в том числе и «Росатом», успокаивали общественность и правительства «ничтожно малой» вероятностью крупной запроектной аварии 10-7, т.е. одна авария в 10 миллионов лет. Но ведь за недолгую историю атомной энергетики произошло уже две «мирных» атомных катастрофы (7 уровень по шкале INES): аварии на ЧАЭС и «Фукусима-1». А еще была авария на «Три-Майл-Айленд» (5 уровень по шкале INES) и еще целый ряд эпизодов, когда до катастрофы оставались часы и даже минуты.

Наши рекомендации