Вычисление определенного интеграла способом подстановки
При вычислении определённого интеграла так же приходится применять различные приёмы, в том числе и способ подстановки. Подстановка в определённом интеграле делается аналогично подстановке в неопределённом интеграле, но, кроме того, для получающегося интеграла нужно находить новые пределы интегрирования.
Правило:
1) Определить, к какому табличному интегралу приводится данный интеграл;
2) Определить, какую часть подынтегральной функции необходимо заменить новой переменной, записать эту замену;
3) Вычислить дифференциал новой переменной и выразить через него оставшуюся без замены часть подынтегрального выражения;
4) Найти пределы интегрирования для новой переменной;
5) Выполнить замены под знаком интеграла;
6) Вынести за знак интеграла постоянный множитель;
7) Вычислить полученный табличный интеграл;
8) В полученное его выражение подставить вместо новой переменной сначала верхний предел интегрирования, а затем нижний, из первого результата вычесть второй.
Замечание: В отличие от неопределенного интеграла после подстановки новой переменной и замены пределов интегрировании в определённом интеграле все вычисления проводят с новой переменной и к старой переменной не возвращаются.
Пример: Вычислить:
1. ;
Решение:
1) ;
2) ;
3) ; ;
4)
х | |
Ответ: .
2. ;
;
1) ;
2) ;
3) ; ;
4)
х | |
;
;
1) ;
2) ;
3) ; ;
4)
х | |
;
;
Ответ: .
3. ;
1) ;
2) ;
3) ; ;
х | |
4)
Ответ: .
Упражнения: Вычислить определённые интегралы:
1) ; | 2) ; | 3) ; |
4) ; | 5) ; | 6) ; |
7) ; | 8) ; | 9) ; |
10) ; | 11) ; | 12) ; |
13) ; | 14) ; | 15) ; |
16) ; | 17) ; | 18) ; |
19) ; | 20) ; | 21) ; |
22) ; | 23) ; | 24) ; |
25) ; | 26) ; | 27) . |
Ответы:
1) ; | 2) ; | 3) ; | 4) 2; | 5) ; | 6) ; |
7) ; | 8) ; | 9) 3; | 10) ; | 11) ; | 12) 2; |
13) 2; | 14) ; | 15) ; | 16) ; | 17) ; | 18) ; |
19) ; | 20) ; | 21) ; | 22) ; | 23) ; | 24) 2; |
25) ; | 26) ; | 27) ; |
Площадь криволинейной трапеции. Геометрический смысл определенного интеграла
Определение: Криволинейной трапецией называется фигура, ограниченная осью абсцисс ( ), двумя прямыми, параллельными оси ординат ( , ), непрерывной и неотрицательной функцией при рассматриваемых значениях аргумента.
Задача №1. Является ли фигура криволинейной трапецией?
Рис. 1. Рис. 2. Рис. 3. Рис. 4.
Рис. 5. Рис. 6. Рис. 7.
Решение:
- Фигура (Рис.1.) не является криволинейной трапецией, так как функция, её ограничивающая принимает отрицательные значения при рассматриваемых значениях аргумента.
- Фигура (Рис.2.) не является криволинейной трапецией, так как она не ограничена справа прямой, параллельной оси ординат.
- Фигура (Рис.3.) не является криволинейной трапецией, так как она не ограничена осью абсцисс.
- Фигура (Рис.4.) является криволинейной трапецией, так как она ограничена осью абсцисс, двумя прямыми, параллельными оси ординат, непрерывной и неотрицательной функцией при рассматриваемых значениях аргумента.
- Фигура (Рис.5.) не является криволинейной трапецией, так как функция, её ограничивающая принимает неотрицательные и отрицательные значения при рассматриваемых значениях аргумента.
- Фигура (Рис.6.) не является криволинейной трапецией, так как функция, её ограничивающая не является непрерывной при рассматриваемых значениях аргумента.
- Фигура (Рис.7.) не является криволинейной трапецией, так как она не ограничена осью абсцисс.
Задача №2. Выразить площади фигур через площади криволинейных трапеций.
Рис. 1. Рис. 2. Рис. 3.
Рис. 4. Рис. 5.
Решение:
- Площадь фигуры BCE (Рис.1.) равна разности площадей криволинейных трапеций ABCD u ABECD: .
- Площадь фигуры ABC (Рис.2.) равна сумме площадей криволинейных трапеций ABD u BCD: .
- Площадь фигуры BCDF (Рис.3.) равна разности площадей криволинейных трапеций ABCDЕ u ABFDE: .
- Площадь фигуры ABCD (Рис.4.) равна разности площадей криволинейных трапеций ABC u ADC: .
- Площадь фигуры ABC (Рис.5.) равна сумме площадей криволинейных трапеций ABD u BCD: .
Задача №3. Найти концы интервала, на котором построена фигура, ограниченная функциями:
1) ; ; 2) ; ; 3) ; .
Рис. 1. Рис. 2. Рис. 3.
Решение:
1) Концами интервала a u b, на котором построена данная криволинейная трапеция, являются абсциссы точек пересечения параболы и оси абсцисс . Решим способом подстановки систему уравнений:
Û Û
;
; ;
; ; ; ;
Ответ: ; .
2) Концами интервала a u b, на котором построена данная фигура, являются абсциссы точек пересечения параболы и прямой . Решим способом подстановки систему уравнений:
Û Û
; ; ;
; ; ;
Ответ: ; .
3) Концами интервала a u b, на котором построена данная фигура, являются абсциссы точек пересечения парабол и . Решим способом подстановки систему уравнений:
Û Û
; ; ;
; ; ;
Ответ: ; .
Упражнения:
- Построить фигуру, ограниченную функциями , , , . Является ли фигура криволинейной трапецией? Найти концы интервала, на котором построена фигура.
- Построить фигуру, ограниченную функциями , , , . Является ли фигура криволинейной трапецией? Найти концы интервала, на котором построена фигура.
Построим криволинейную трапецию Р0М0МР, ограниченную функцией , положительной и возрастающей при рассматриваемых значениях аргумента .
От чего зависит площадь криволинейной трапеции Р0М0МР?
1. Площадь криволинейной трапеции Р0М0МР зависит от длины отрезка , на котором она построена: чем больше длина отрезка , тем больше площадь криволинейной трапеции Р0М0МР .
2. Площадь криволинейной трапеции Р0М0МР зависит от вида ограничивающей её функции .
Вывод: Площадь криволинейной трапеции, ограниченной непрерывной и неотрицательной функцией на отрезке оси абсцисс равна определённому интегралу в пределах от а до b от функции .
Вывод: Геометрический смысл определённого интеграла состоит в том, что определённый интеграл в пределах от а до b от непрерывной и неотрицательной функции равен площади криволинейной трапеции, ограниченной функцией на отрезке оси абсцисс.
Пример:
- Вычислить площадь криволинейной трапеции, построенной на отрезке оси абсцисс и ограниченной функцией . Сделать чертёж.
Решение:
Воспользуемся формулой площади криволинейной трапеции:
.
Ответ:
- Вычислить площадь криволинейной трапеции, построенной на отрезке оси абсцисс и ограниченной функцией . Сделать чертёж.
Решение:
;
- ветви направлены вниз;
; ;
; ;
- вершина параболы;
- ось симметрии параболы;
х | ||||
у | - 5 |
Концы интервала, на котором построена данная криволинейная трапеция, являются абсциссами точек пересечения параболы и оси абсцисс . Решим способом подстановки систему уравнений:
Û Û
; ; ;
; ; ; ;
Воспользуемся формулой площади криволинейной трапеции: .
Ответ:
Упражнения: