Как найти уравнение нормали к графику функции в заданной точке?
На данном уроке мы узнаем, как найти уравнение нормали к графику функции в точке и разберём многочисленные примеры, которые касаются этой задачи. Для качественного усвоения материала нужно понимать геометрический смысл производной и уметь их находить хотя бы на уровне следующих статей:
Как найти производную?
Производная сложной функции
и
Простейшие задачи с производными.
Перечисленные уроки позволят «чайникам» быстро сориентироваться в теме и поднять свои навыки дифференцирования практически с полного нуля. По существу, сейчас последует развёрнутое продолжение параграфа об уравнении касательной 3-й статьи из вышеприведенного списка. Почему продолжение? Уравнение нормали тесно связано с уравнением касательной. Помимо прочего я рассмотрю задачи о том, как построить уравнения этих линий в ситуациях, когда функция задана неявнолибо параметрически.
Но сначала освежим воспоминания: если функция дифференцируема в точке (т.е. если существует конечная производная ), то уравнение касательной к графику функции в точке можно найти по следующей формуле:
Это самый распространенный случай, с которым мы уже столкнулись на уроке Простейшие задачи с производными. Однако дело этим не ограничивается: если в точке существует бесконечная производная: , то касательная будет параллельна оси и её уравнение примет вид . Дежурный пример: функция с производной , которая обращается в бесконечность вблизи критической точки . Соответствующая касательная выразится уравнением:
(ось ординат).
Если же производной не существует (например, производной от в точке ), то, разумеется, не существует и общей касательной.
Как различать последние два случая, я расскажу чуть позже, а пока что вернёмся в основное русло сегодняшнего урока:
Что такое нормаль? Нормалью к графику функции в точке называется прямая, проходящая через данную точку перпендикулярно касательной к графику функции в этой точке (понятно, что касательная должна существовать). Если совсем коротко, нормаль – это перпендикулярная к касательной прямая, проходящая через точку касания.
Как найти уравнение нормали? Из курса аналитической геометрии напрашивается очень простой алгоритм: находим уравнение касательной и представляем его вобщем виде . Далее «снимаем» нормальный вектор и составляем уравнение нормали по точке и направляющему вектору .
Этот способ применять можно, но в математическом анализе принято пользоваться готовой формулой, основанной на взаимосвязи угловых коэффициентов перпендикулярных прямых. Если существует конечная и отличная от нуля производная , то уравнение нормали к графику функции в точке выражается следующим уравнением:
Особые случаи, когда равна нулю либо бесконечности мы обязательно рассмотрим, но сначала «обычные» примеры:
Пример 1
Составить уравнения касательной и нормали к графику кривой в точке, абсцисса которой равна .
В практических заданиях часто требуется найти и касательную тоже. Впрочем, это очень только нА руку – лучше будет «набита рука» =)
Решение: Первая часть задания хорошо знакома, уравнение касательной составим по формуле:
В данном случае:
Найдём производную:
Здесь на первом шаге вынесли константу за знак производной, на втором – использовали правило дифференцирования сложной функции.
Теперь вычислим производную в точке :
Получено конечное число и это радует. Подставим и в формулу :
Перебросим наверх левой части, раскроем скобки и представим уравнение касательной в общем виде:
Вторая часть задания ничуть не сложнее. Уравнение нормали составим по формуле:
Избавляемся от трёхэтажности дроби и доводим уравнение до ума:
– искомое уравнение.
Ответ:
Здесь можно выполнить частичную проверку. Во-первых, координаты точки должны удовлетворять каждому уравнению:
– верное равенство.
– верное равенство.
И, во-вторых, векторы нормали должны быть ортогональны. Это элементарно проверяется с помощью скалярного произведения:
, что и требовалось проверить.
Как вариант, вместо нормальных векторов можно использовать направляющие векторы прямых.
!Данная проверка оказывается бесполезной, если неверно найдена производная и/или производная в точке . Это «слабое звено» задания – будьте предельно внимательны!
Чертежа по условию не требовалось, но полноты картины ради:
Забавно, но фактически получилась и полная проверка, поскольку чертёж выполнен достаточно точно =) Кстати, функция задаёт верхнюю дугу эллипса.
Следующая задача для самостоятельного решения:
Пример 2
Составить уравнения касательной и нормали к графику функции в точке .
Примерный образец чистового оформления задания в конце урока.
Теперь разберём два особых случая:
1) Если производная в точке равна нулю: , то уравнение касательной упростится:
То есть, касательная будет параллельна оси .
Соответственно, нормаль будет проходить через точку параллельно оси , а значит её уравнение примет вид .
2) Если производная в точке существует, но бесконечна: , то, как отмечалось в самом начале статьи, касательная станет вертикальной: . И поскольку нормаль проходит через точку параллельно оси , то её уравнение выразится «зеркальным» образом:
Всё просто:
Пример 3
Составить уравнения касательной и нормали к параболе в точке . Сделать чертёж.
Требование выполнить чертёж я не добавлял – так было сформулировано задание в оригинале. Хотя это редкость.
Решение: составим уравнение касательной .
В данном случае
Казалось бы, расчёты пустяковые, а в знаках запутаться более чем реально:
Таким образом:
Поскольку касательная параллельна оси (Случай №1), то нормаль, проходящая через ту же точку , будет параллельна оси ординат:
Чертёж – это, конечно же, дополнительные хлопоты, но зато добротная проверка аналитического решения:
Ответ: ,
В школьном курсе математики распространено упрощённое определение касательной, которое формулируется примерно так: «Касательная к графику функции – это прямая, имеющая с данным графиком единственную общую точку». Как видите, в общем случае это утверждение некорректно. Согласно геометрическому смыслу производной, касательной является именно зелёная, а не синяя прямая.
Следующий пример посвящён тому же Случаю №1, когда :
Пример 4
Написать уравнение касательной и нормали к кривой в точке .
Краткое решение и ответ в конце урока
Случай №2, в котором на практике встречается редко, поэтому начинающие могут особо не волноваться и с лёгким сердцем пропустить пятый пример. Информация, выделенная курсивом, предназначена для читателей с высоким уровнем подготовки, которые хорошо разобрались с определениями производной и касательной, а также имеют опыт нахождения производной по определению:
Пример 5
Найти уравнения касательной и нормали к графику функции в точке
Решение: в критической точке знаменатель производной обращается в ноль, и поэтому здесь нужно вычислить односторонние производные с помощью определения производной (см. конец статьи Производная по определению):
Обе производные бесконечны, следовательно, в точке существует общая вертикальная касательная:
Ну, и очевидно, что нормалью является ось абсцисс. Формально по формуле:
Для лучшего понимания задачи приведу чертёж:
Ответ:
Я рад, что вы не ушли бороздить просторы Интернета, потому что всё самое интересное только начинается! Чтобы осилить материал следующего параграфа, нужно уметь находить производную от неявно заданной функции:
Как найти уравнение касательной и уравнение нормали,
если функция задана неявно?
Формулы касательной и нормали остаются прежними, но меняется техника решения:
Пример 6
Найти уравнения касательной и нормали к кривой в точке .
Решение: судя по уравнению, это какая-то линия 3-го порядка, какая именно – нас сейчас совершенно не интересует.
В уравнении присутствует зловред , и поэтому перспектива выразить функция в явном виде выглядит весьма туманной.
Но этого и не требуется! Есть куда более остроумное решение. Уравнение касательной составим по той же формуле .
Из условия известны значения , кстати, не помешает убедиться, что они действительно удовлетворяют предложенному уравнению:
Получено верное равенство, значит, с точкой всё в порядке.
Осталось вычислить . Сначала по стандартной схеме найдём производную от функции, заданной неявно:
Перепишем результат с более подходящим для нашей задачи обозначением:
На 2-м шаге в найденное выражение производной подставим :
Вот так-то!
Осталось аккуратно разобраться с уравнением:
Составим уравнение нормали:
Ответ:
Готово! А поначалу представлялось всё непросто. Хотя производная здесь, конечно, – место уязвимое. Миниатюра для самостоятельного решения:
Пример 7
Найти уравнение нормали к линии в точке
Хватит уже вымучивать касательную =)
В данном случае легко выяснить, что это окружность центром в точке радиуса и даже выразить нужную функцию . Но зачем?! Ведь найти производную от неявно заданной функции на порядок легче! Она тут чуть ли не самая примитивная.
Краткое решение и ответ в конце урока.
Как найти уравнение касательной и уравнение нормали,
если функция задана параметрически?
Ещё проще. Но для этого нужно потренироваться в нахождении производной от параметрически заданной функции. А так – почти халява:
Пример 8
Составить уравнения касательной и нормали к циклоиде , проведенные в точке, для которой .
Чертёж циклоиды можно найти на странице S и V, если линия задана параметрически (так получилось, что эта статья была создана раньше). Там даже изображена точка касания.
Решение: абсцисса и ордината точки касания рассчитываются непосредственно из параметрических уравнений кривой:
Найдём 1-ую производную от параметрически заданной функции:
И вычислим её значение при :
Уравнение касательной составим по обычной формуле с поправкой на несколько другие обозначения:
Уравнение нормали:
Ответ:
В заключение предлагаю познакомиться с ещё одной интересной линией:
Пример 9
Составить уравнение нормали к полукубической параболе , проведенной в точке, для которой .
Это пример для самостоятельного решения. Напоминаю, что графики параметрически заданных функций можно построить, например, с помощью моего расчётного геометрического макета.
Ну а наш урок подошёл к концу, и я надеюсь, что изложенный материал прошёл для вас не по касательной, а нормально =)
Спасибо за внимание и успехов!
Решения и ответы:
Пример 2: Решение: уравнение касательной составим по формуле:
В данном случае:
Таким образом:
Уравнение нормали составим по формуле :
Ответ:
Пример 4: Решение: уравнение касательной составим по формуле:
В данной задаче:
Таким образом:
В точке касательная параллельна оси , поэтому соответствующее уравнение нормали:
Ответ:
Пример 7: Решение: в данной задаче: .
Найдём производную:
Или:
Подставим в выражение производной :
Искомое уравнение нормали:
Ответ:
Пример 9: Решение: в данном случае:
Найдём производную и вычислим её значение при :
Уравнение нормали:
Ответ:
Взято с сайта http://www.mathprofi.ru