Механизмы действия антибиотиков
По клиническому применению антибиотики принято разделять на основные, или антибиотики выбора, и резервные антибиотики.
1) Основные, или антибиотики выбора – препараты, которые имеют оптимальное соотношение риска и пользы, и с которых начинают лечение до определения чувствительности к ним микроорганизмов, вызвавших заболевание.
2) Резервные антибиотики применяются в случае устойчивости микроорганизмов к основным антибиотикам или при непереносимости макроорганизмом основных антибиотиков. Резервные антибиотики обычно обладают меньшей активностью, у них более выражены побочные эффекты, они обладают большей токсичностью и к ним быстро развивается резистентность.
На клеточном уровне действие антибиотика может быть:
1) бактериостатическим – антибиотик блокирует репликацию и деление клеток и не вызывает их гибели. Клетки сохраняют способность к росту и размножению, если удаляется антибиотик;
2) бактерицидным– в присутствии антибиотика клетка гибнет.
По механизму действия антибиотики делят на:
- ингибиторы синтеза компонентов микробной стенки или активаторы разрушающих ее ферментов (бактерицидные) – пенициллины, цефалоспорины, монобактамы, карбапенемы;
Механизм действия связан с подавлением синтеза или сборки липопротеида наружной мембраны грамотрицательных бактерий.
- нарушающие структуру и функцию цитоплазматических мембран (бактерицидные): полимиксины, полиеновые антибиотики;
- ингибиторы синтеза РНК на уровне РНК-полимеразы (бактерицидные): рифамицины, гризеофульвин;
- ингибиторы синтеза белка на уровне рибосом: бактерицидные – аминогликозиды, бактериостатические – хлорамфеникол, тетрациклин, фузидин, линкомицин, макролиды;
Очень часто антибиотики, не изменяя (микроскопически) структуры клетки, нарушают отдельные жизненно важные функции ее. Например, лизоцим ослабляет, а часто даже блокирует всасывающую и выделительную способность клетки. В результате даже простые метаболиты в такой микробной клетке становятся для нее сильнейшим ядом.
Одним из основных видов противомикробного действия антибиотиков является ингибирование ферментов. Исследования показали, что наиболее часто антибиотики тормозят ферментные реакции и несколько реже препятствуют образованию самих ферментов, но часто наблюдается и то и другое влияние. Чаще всего бывает подавление активностиоксидаз, фосфоролидаз, редуктаз, т. е. таких ферментов, которые совершенно необходимы для метаболизма большого числа бактерий, особенно патогенных.
В механизме противомикробного действия антибиотиков (так же, как и сульфаниламидов) большое значение имеет имитация по принципу стереоизомерии (изомерии, обусловленной различным пространственным расположением атомов в молекуле. Соединения стереоизомеров имеют одну общую формулу и характеризуются одинаковой направленностью связей, но отличаются друг от друга пространственным расположением атомов или атомных групп). Например, в состав протоплазмы входят левовращающие изомеры аминокислот, а в большинстве антибиотиков аминокислоты правовращающие. Доказательством тому служит высокая бактерицидность пенициллина с наличием в нем диметилцистеинаправой конфигурации. В отличие от этого пенициллин синтезированный, содержащий диметилцистеин левой конфигурации, не действует противомикробно.
Важную роль в действии антибиотиков играет появление значительного количества антиметаболитов. Часто наблюдается ослабление функций метильных групп, а все процессы метилирования являются важнейшими в жизнедеятельности живого вещества, и нарушение их ведет к гибели микроба.
Точно так же антибиотики влияют и на макроорганизм. Но в отличие от действия их на микроорганизм в макроорганизме нарушается только незначительная часть ферментов. Это вызывает образование комплекса компенсаторных реакций, которые не подавляют, а активизируют некоторые виды метаболизма.
Под влиянием многих антибиотиков нарушается формирование нуклеиновых кислот и нуклеотидов в микробной клетке. В результате образуется не пластический белок, а ненужные или вредные для микроба вещества. Подобный аспект действия касается также многих ферментов, коферментов и апоферментов, что ведет к подавлению ферментной активности в микробной клетке, а во многих случаях и к извращению ее. Всё это быстро приводит к гибели микробной клетки.
Многие антибиотики нарушают процессы протеолиза (ферментативного расщепления белков до пептидов и аминокислот). Например, левомицетин препятствует синтезу белка, эритромицин изменяет отдельные аминокислоты – глицин, глутаминовую кислоту, лизин, аспарагиновую кислоту и аланин. Однако и в этих направлениях его влияние слабее, чем влияние левомицетина: он выводит из строя только часть каждой из упомянутых аминокислот.
Абсолютное большинство молекулярных изменений, вызываемых антибиотиками, являются общими для живого вещества микробной и животной клеток. Разница заключается главным образом в том, что в микробной (одиночной) клетке они гораздо длительнее, резче выражены и труднее восстанавливаются. В животных тканях все вызываемые ими процессы проходят так же, но они слабее и кратковременнее, а поэтому часто не подавляют, а активизируют многие жизненно важные функции.
Различие в действии на микро- и макроорганизмы увеличивается еще больше от того, что антибиотики изменяют многие процессы метаболизма только микроорганизмов. Например, стрептомицин нарушает реакции пировиноградной и щавелево-уксусной кислот в цикле Кребса. Эти реакции свойственны всем клеткам, но у животных они протекают в митохондриях, недоступных для стрептомицина. В бактериальной же клетке такие реакции ничем не защищены и легко нарушаются антибиотиком.