Скорость истечения газа и расход газа
Под неразрывностью (сплошностью) газового потока понимают следующее: сколько газа по массе вошло в проточную систему, столько же его должно выйти из нее.
Для термодинамического анализа потока рабочего тела принимают следующие допущения:
1. Переменную по перечному сечению канала скорость потока (у самой стенки канала она равна нулю и максимальна на оси канала) заменяют средним значением (рис.1), которое определяется выражением:
,
где – средняя скорость газового потока, м/с; (в дальнейшем без черточки)
m – массовый расход газа, кг/с;
r – плотность газа (рабочего тела), кг/м3;
f – площадь поперечного сечения канала, м2;
u – удельный объем газа, м3/кг.
2. Рассматривают только такой поток, в котором скорость и другие параметры в каждом его сечении не изменяются во времени, т.е. установившийся (стационарный) поток, характеризуемый постоянством массового расхода:
; Þ .
Представленное выражение отражает условие неразрывности (сплошности) газового потока. Прологарифмируем его:
ln(mu) = ln(wf) Þ ln m + ln u = ln w + ln f.
Продифференцируем полученное равенство:
.
Так как m = const, то dm = 0. Тогда
.
Полученное соотношение устанавливает связь между степенью изменения сечение (профиля) канала df/f, степенью изменения удельного объема du/u и степенью изменения скорости потока dw/w.
Истечением называется движение газа с ускорением через относительно короткие каналы особой формы, в которых происходит изменение давления. Различают каналы двух видов: сопла и диффузоры.
Соплом называется такой канал, в котором при движении газа давление уменьшается (dp < 0), а скорость течения газа возрастает (dw > 0). Диффузором называется такой канал, в котором при движении газа давление возрастает (dp > 0), а скорость уменьшается (dw < 0).
Рассмотрим уравнением энергии газового потока:
Как правило, сопловые аппараты и диффузоры закреплены неподвижно, поэтому в них не совершается техническая работа LТ = 0. Мы будем рассматривать неподвижные каналы, в которых входные и выходные сечения находятся на одном уровне, следовательно, потенциальная энергия потока во время его нахождения в канале не изменяется, т.е. z2 – z1 = 0. Так как газ в канале находится относительно короткое время, в течение которого можно считать, что между ним и окружающей средой не происходит обмена энергией в тепловой форме, т.е. Q = 0. Тогда уравнение энергии газового потока можно записать в следующем виде:
Þ .
Во многих случаях w1 << w2 (истечение из сосуда большого объема), поэтому начальной скоростью потока w1 можно пренебречь. В результате, можно записать:
.
Разность энтальпий равна:
.
Так как в адиабатном процессе тепловая энергия не подводится, то изменение внутренней энергии происходит за счет совершения работы изменения объема:
.
Запишем выражения для определения работы изменения объема при осуществлении адиабатного процесса:
, ,
Тогда
Þ
.
Введя обозначение b = р2/р1, запишем выражение для определения скорости истечения газа:
.
Расход газа через канал определяем из условия неразрывности газового потока на основе выражения:
.
Из уравнения адиабаты , получим:
Þ Þ .
Тогда массовый расход газа будет равен:
,