А. Судна і потяги можуть прибувати в перевалочний пункт по будь-якій нитці графіка, прокладеній в зоні узгодження.

Для умов рівної можливості прибуття судів і потягів по будь-якій нитці графіка вірогідність заняття поїздом кожної з т ниток, розташованих в зоні узгодження, складе:

Аналогічно для судна при п нитках графіка, розташованих в зоні узгодження:

Вірогідність здійснення кожного варіанту взаємного розташування потягу і судна в зоні узгодження рівна добутку вірогідності:

Позначивши через час неспівпадання при здійсненні 1-го варіанту взаємного розташування потягу і судна, математичне очікування величини неспівпадання може бути знайдено з виразу:

Тут — сумарний час неспівпадання моментів прибуття потягів і судів при разовому здійсненні тп варіантів з взаємного їх розташування в зоні узгодження. Величина складається з двох складових: (раніше прибувають вагони) і (раніше прибувають судна).

При плануванні підведення до перевалочного пункту в зоні узгодження N потягів для завантаження одного судна число варіантів їх взаємного розташування на графіку рівно

п — кількість ниток водного графіка; —число поєднань в розташуванні N потягів на т нитках залізничного графіка.

Таким чином, середня величина часу неспівпадання моментів прибуття потягів і судів залежить лише від числа і розташування ниток суміщеного графіка і не залежить від використання цих ниток.

Б. Потяги можуть прибувати по одній з ниток графіка, прокладених в зоні узгодження, судна — у будь-який момент зони узгодження

При рівній можливості прибуття потягів за будь-якою з т ниток графіка, прокладених в зоні узгодження, вірогідність виникнення очікування вагонами судна для кожної 1-й нитки графіка визначиться з виразу:

тут —кінцевий момент зони поєднання; — момент прибуття потягу по 1-й нитці графіка.

Середнє значення величини неспівпадання у разі прибуття потягу по 1-й нитці графіка

Математичне очікування величини неспівпадання для і-тої нитки графіка

Середня математичних очікувань величин ^несовпадения при т нитках графіка в зоні поєднання складе

і аналогічно для водного транспорту

Тут tn— початковий момент зони узгодження.

При N потягах середня величина математичних очікувань неспівпадання для кожного поєднання N по п рівна

Вони повністю співпадають з звідки витікає, що середня величина часу неспівпадання моментів прибуття потягів і судів залежить від числа і розташування ниток суміщеного графіка і не залежить від використовування цих ниток.

В. Судна і потяги з рівною вірогідністю можуть прибувати у будь-який момент зони узгодження

Розділимо період поєднання Тс на деяке число х рівних частин. Тоді через початкову умову рівної вірогідності прибуття суден і потягів у будь-який момент періоду поєднання розподіл прибуття по відрізках ΔТс можна вважати рівномірним.

Можливі х2 варіантів взаємного положення моментів прибуття судна і потягу по відрізках ΔТс. Для випадку прибуття судна в х-й відрізок часу ΔТс з рівною можливістю здійснити х варіантів прибуття потягу, при цьому величина неспівпадання може змінюватися від 0 до Тс- Сумарний час неспівпадання в підході вагонів і суден при реалізації х варіантів і, отже, сумарний час очікування визначиться з виразу: .

Для випадку прибуття судна в (х—1)-й відрізок часу ΔТс також можливі х варіантів прибуття потягу, але очікування вагонами судна спостеріга-тиметься тільки в (х— 1) варіантах. Сумарний час очікування при здійсненні всіх цих (х— 1) варіантів складе .

Загальна сума часу очікування вагонами судна при разовому здійсненні всіх х2 можливих варіантів розташування потягу і судна по відрізках ΔТс може бути знайдений підсумовуванням ряду:

Після проведення математичного аналізу отримаємо:

Оскільки ця сума витрат часу виникає при здійсненні всіх х2 варіантів взаємного розташування моментів прибуття судна і потягу по відрізках ΔТс, середній час неспівпадання в кожному з варіантів складе:

при , отримаємо

Величина може бути прийнята як наближена оцінка tнс для вмпадків А Б (прибуття потягів по одній або декількох нитках графіка в зоні узгодження). Достатню для практичної мети точність наближення дає оцінка вже при 5—6 ти нитках графіка взоні узгодження, причому із збільшенням числа ниток графіа точність підвищується. При складних розподілах густини прибуття суден і потягів в зонах узгодження математичне очікування величини неспівпадання буде залежати від характеру кривих розподілу і їх взаємного розміщення. Для зменшення величини неспівпадання слід купно прокладати нитки графіків в зонах узгодження, по можливості суміщаючи їх так, щоб максимальні щільності прибуття по суміжних графіках співпадали.

Для практичних розрахунків, коли період поєднання не перевищує економічно виправданого часу очікування, величину неспівпадання моментів прибуття tнс і середній термін очікування прямого варіанту τнс можна приймати рівними .

Якщо очікування прямого варіанту переробки вантажів допускати тільки в межах економічно виправданого часу, значення τнс скоротиться і буде тим менше ніж менше відношення економічно виправданого часу очікування τ0 до періоду суміщення Тс.

Наши рекомендации