Nbsp; Последовательный высокоскоростной порт FireWire, IEEE 1394
Рис.7 Порт FireWire.
Ни один из существовавших ранее стандартов внешних портов не позволял в реальном времени передавать видеоряд. Поэтому таким устройствам, как миниатюрные цифровые телекамеры, приходилось использовать свои собственные оригинальные интерфейсные платы. Пользователю от этого удобнее не было. Еще в 1986 году фирма Apple разработала цифровой интерфейс 1394, названный FireWire. И только в 1995 году его следующая версия была стандартизована как IEEE 1394. Свое название "Fire on the Wire" шина получила за свою высокою скорость 100 Мбит/сек. В дальнейшем стандарт был расширен, и рабочая скорость увеличилась до 400 Мбит/сек (для сравнения: передача видео 640x480 x 30 кадров x 3 байт/пиксел образует поток в 210 Мбит/сек). Аналогично USB, FireWire способна запитывать подключаемое устройство (8-40 В -, до 1,5 А), и подключение устройств можно производить на ходу (hot-plug). Разъем имеет 6 контактов: 4 - 2 витых пары для двунаправленного обмена, 2 - питание. Для не требующих питания устройств можно применять более экономичные 4-жильные кабели. В качестве системных устройств шины IEEE 1394 могут служить повторители, концентраторы и мосты. Такое разнообразие, по сравнению с USB, делает шину FireWire несколько гибче. Ограничение на количество подключенных устройств на одной сигнальной линии (до 63) и максимальное количество промежуточных узлов на пути запроса от одного устройства до другого (до 16) накладывает дополнительные условия на топологию шины. Но благодаря мостам имеется возможность объединять отдельные независимые сегменты шины. Всего с помощью мостов можно объединить до 1000 (!) разных сегментов в общую сеть на основе FireWire.
Передача данных в IEEE 1394 может происходить как в асинхронном, так и в синхронном режиме с заданной гарантированной скоростью передачи данных (очень важно для передачи в реальном времени: звук, видео). Если устройство должно работать в синхронном режиме, оно резервирует для себя определенное место в кадре данных (длина кадра равна 125 мсек). Для этого рабочий квант времени передачи делится на зарезервированные участки и на остальное - для асинхронной передачи. Интерфейс FireWire уже несколько лет применяется в цифровых (профессиональных и бытовых) видео- теле- камерах, магнитофонах и фотоаппаратах, которые можно самостоятельно соединять между собой без участия компьютера, благодаря возможностям IEEE 1394, и осуществлять цифровой видеомонтаж в реальном времени. Существует и Гигабитный вариант IEEE 1394.2, в котором используется оптоволоконный соединительный кабель.
Таблица 6
Контакты порта FireWire
Контакты | Обозначение | |
English | Russian | |
1-2 | Data (Twisted Pair) | Сигнальная линия (вход) |
3-4 | Data (Twisted Pair) | Сигнальная линия (выход) |
5-6 | +8 V | Питание и общий провод |
Последовательный инфракрасный порт IrDA (Infrared Data Association)
В силу своей конструкции, в которой используется источник света и фотодатчик, инфракрасный порт - последовательный. Для передачи информации соединительные кабели не используются, поэтому взаимодействие устройств происходит на небольшом расстоянии и при условии "прямой видимости". В июне 1994 года ассоциация IrDA опубликовала спецификацию последовательного ИК-порта. В домашнем компьютере на большинстве материнских плат имеется разъем для подключения ИК-порта (сам порт продается отдельно), скорость передачи в данном случае почти такая же, как и у RS-232C (от 2,4 до 115 Кбит/сек). Передача данных идет асинхронно в обоих направлениях, и для обнаружения ошибок используется циклический код CRC-8 в коротких пакетах и CRC-16 - в длинных.
В октябре 1995 IrDA предложила следующую версию ИК-порта, работающего со скоростью до 4 Мбит/сек в пределах 1-2 метров видимости. В данном случае обмен данными происходит синхронно, а для обнаружения ошибок уже используется CRC-32. Некоторые производители предлагают свои оригинальные разработки ИК-портов (для сканеров и принтеров), которые способны передавать данные на скорости от 2 до 16 Мбит/сек. Инфракрасный порт несколько специфичен для России, поэтому его можно встретить разве что в беспроводных клавиатурах, джойстиках и интерфейсах мобильный телефон<->ноутбук.
Устройство инфракрасного интерфейса подразделяется на два основных блока: преобразователь (модули приемника-детектора и диода с управляющей электроникой) и кодер-декодер. Блоки обмениваются данными по электрическому интерфейсу, в котором в том же виде транслируются через оптическое соединение, за исключением того, что здесь они пакуются в кадры простого формата – данные передаются 10bit символами, с 8bit данных, одним старт-битом в начале и одним стоп-битом в конце данных.
Сам порт IrDA основан на архитектуре коммуникационного СОМ-порта ПК, который использует универсальный асинхронный приемо-передатчик UART (Universal Asynchronous Receiver Transmitter) и работает со скоростью передачи данных 2400–115200 bps.
Связь в IrDA полудуплексная, т.к. передаваемый ИК-луч неизбежно засвечивает соседний PIN-диодный усилитель приемника. Воздушный промежуток между устройствами позволяет принять ИК-энергию только от одного источника в данный момент.
Рис. 5. Схема интерфейса IrDA