Изображение пространственных фигур

Изображение цилиндра.

 
  Изображение пространственных фигур - student2.ru

Дан прямой круговой цилиндр. Для наглядности будем считать, что плоскость изображения a параллельна оси цилиндра, а направление проектирования, определенное вектором Изображение пространственных фигур - student2.ru не перпендикулярно a. Проведем плоскости p1 и p2, перпендикулярные a и касающиеся цилиндра. Основания цилиндра изобразятся эллипсами, а его образующие АА¢ и ВВ¢ - касательными к изображению оснований (контурные образующие).

 
  Изображение пространственных фигур - student2.ru

Изображение конуса. Так же, как и в случае цилиндра, выберем плоскость изображения параллельно оси цилиндра, а вектор Изображение пространственных фигур - student2.ru , определяющий направление проектирования, не перпендикулярно плоскости изображения. Пусть s - плоскость основания конуса. Проведем через его вершину S прямую, параллельную вектору Изображение пространственных фигур - student2.ru . Получим точку S¢ пересечения этой прямой и плоскости основания. Тогда конус проектируется в фигуру, полученную отрезками касательных S¢A и S¢B, проведенных из точки S¢ к окружности основания, и самой окружностью. Поэтому при проекции конуса на плоскость a мы получим, что окружность основания изображается эллипсом, изображение вершины S принадлежит прямой, содержащей ее меньшую ось, а контурные образующие – отрезками касательных, проведенных из изображения вершины к изображению окружности основания.

Изображение сферы. При построении изображения сферы используется ортогональная проекция, иначе сфера будет изображена эллипсом. Поэтому изображением сферы служит окружность. Для наглядности на изображении сферы указывают окружность большого круга, не перпендикулярную и не параллельную плоскости изображения (экватор). Проведем прямую, перпендикулярную плоскости экватора. Изображения ее точек пересечения со Изображение пространственных фигур - student2.ru
сферой называются полюсами. Полюсы сферы не расположены на контурной окружности сферы, иначе экватор сферы представляет собой отрезок, а его плоскость – параллельна плоскости изображения. Укажем способ построения полюсов, соответствующих данному экватору.

Обозначим плоскость изображения через a, а плоскость экватора через s. АВ и CD оси эллипса экватора на изображении. Они принадлежат плоскости a, Точки С¢ и D¢ принадлежат большой окружности, полученной при пересечении s и сферы. Эти точки проектируются в С и D. Прямая S¢N¢ перпендикулярна плоскости s, а сами эти точки служат пересечением прямой и сферы. Таким образом: Изображение пространственных фигур - student2.ru Величина угла между плоскостями a и s равна j. Очевидно, этот угол совпадает по величине с углом СОС¢ прямоугольного треугольника СОС¢, а угол NON¢ прямоугольного треугольника NON¢ равен Изображение пространственных фигур - student2.ru . Отсюда следует, что Изображение пространственных фигур - student2.ru , а Изображение пространственных фигур - student2.ru .

С другой стороны, если СК – касательная к эллипсу экватора на изображении сферы, то треугольник СОК прямоугольный, Изображение пространственных фигур - student2.ru , и, как было доказано ранее, Изображение пространственных фигур - student2.ru . Поэтому Изображение пространственных фигур - student2.ru . Отсюда следует, что Изображение пространственных фигур - student2.ru . Таким образом, Изображение пространственных фигур - student2.ru

Изображение пространственных фигур - student2.ru

Наши рекомендации