Физические величины и их измерения

Для количественного описания различных свойств физических объектов, физических систем, явлений или процессов в РМГ 29-99 (Рекомендации по межгосударственной стандартизации) введено понятие величины.

Величина - это свойство, которое может быть выделено среди других свойств и оценено тем или иным способом, в том числе и количественно.

Величины делятся на идеальныеиреальные.

Идеальные величины главным образом относятся к области математики и являются обобщением (моделью) конкретных реальных понятий. Они вычисляются тем или иным способом.

Реальные величины делятся на физические и нефизические.

Физическая величина в общем случае может быть определена как величина, свойственная некоторым материальным объектам (процессам, явлениям), изучаемым в естественных (физика, химия) и технических науках. К физической величине можно отнести массу, температуру, время, длину, напряжение, давление, скорость и др.

К нефизическим относятся величины, присущие общественным (нефизическим) наукам - философии, социологии, экономике и т.д. Нефизические величины, для которых единица измерения не может быть введена, могут быть только оценены. Примеры нефизических величин: оценка учащихся по 5-ти балльной шкале, число сотрудников в организации, цена товара, ставка налога и др. Оценивание нефизических величин не входит в задачи теоретической метрологии.

Физическая величина – одно из свойств физического объекта, общее в качественном отношении для многих физических объектов, но в количественном отношении индивидуальное для каждого из них (качественная сторона определяет «род» величины, например, электрическое сопротивление как общее свойство проводников электричества, а количественная – ее «размер», например, сопротивление конкретного проводника).

Различают физические величины измеряемые и оцениваемые.

Измеряемые физические величины можно выразить количественно в виде определенного числа установленных единиц измерения.

Оцениваемые физические величины – величины, для которых по каким-либо причинам не может быть введена единица измерения, и они могут быть только оценены.

Оценивание – операция приписывания данной физической величине определенного числа принятых для нее единиц, проведенная по установленным правилам. Оценивание осуществляется при помощи шкал.

Для выражения количественного содержания свойства конкретного объекта употребляется понятие «размер физической величины», оценку которого устанавливают в процессе измерения.

Размер физической величины (размер величины) – это количественная определённость физической величины, присущая конкретному материальному объекту, системе, явлению или процессу.

Например, каждый человек обладает определённым ростом, массой, вследствие чего людей можно различать по их росту или массе, т.е. по размерам интересующих нас физических величин.

Размер является объективной количественной характеристикой, не зависящей от выбора единиц измерений.

Например, если мы запишем 3,5 кг и 3500 г, то это два варианта представления одного и того же размера. Каждый из них является значением физической величины (в данном случае – массы).

Значение физической величины – это выражение размера физической величины в виде некоторого числа принятых для неё единиц.

Значение физической величины Q получают в результате измерения и вычисляют в соответствии с основным уравнением измерения:

Q = q [Q], (1)

где q – отвлечённое число, называемое числовым значением, а [Q] – размер единицы измерения данной физической величины.

Числовое значение физической величины – отвлеченное число, выражающее отношение значения величины к соответствующей единице данной физической величины.

Числовое значение результата измерения будет зависеть от выбора единицы физической величины. (Пример про удава из мультфильма).

Цифры 3,5 и 3500 – это отвлечённые числа, входящие в значение физической величины и указывающие на числовые значения физической величины. В приведенном примере масса объекта приводится числами – 3,5 и 3500, а единицами являются килограмм (кг) и грамм (г).

Значение величины не следует смешивать с размером. Размер физической величины данного объекта существует реально и независимо от того, знаем мы его или нет, выражаем его в каких-либо единицах или нет. Значение же физической величины появляется только после того, как размер величины данного объекта выражен с помощью какой-либо единицы.

Единица физической величины — физическая величина фиксированного размера, которой условно присвоено числовое значение, равное единице. Она применяется для количественного выражения однородных физических величин.

Однородные физические величины – это физические величины, которые выражаются в одинаковых единицах и могут сравниваться друг с другом (например, длина и диаметр детали).

Физические величины объединены в систему.

Система физических величин(система величин) - это совокупность физических величин, образованная в соответствии с принятыми принципами, когда одни величины принимают за независимые, а другие определяют как функции этих независимых величин.

Все величины, входящие в систему физических величин, делят на основные и производные.

Основная физическая величина - физическая величина, входящая в систему величин и условно принятая в качестве независимой от других величин этой системы.

Производная физическая величина – физическая величина, входящая в систему величин и определяемая через основные величины этой системы.

Формализованным отражением качественного различия физических величин является их размерность.

Размерность физической величины - это выражение, отражающее связь данной величины с физическими величинами, принятыми в данной системе единиц за основные с коэффициентом пропорциональности, равным единице.

Размерность физической величины обозначается символом dim (от лат. dimension – размерность).

Размерность основных физических величин обозначается соответствующими заглавными буквами:

длина - dim l = L

масса - dim m = М

время - dim t = Т

сила электрического тока – dim i= I

термодинамическая температура – dim Q = Q

количество вещества - dim n = N

сила света – dim j = J

Размерность dim xлюбой производной физической величины хопределяют через уравнение связи между величинами. Она имеет вид произведения основных величин, возведённых в соответствующие степени:

dim x = LaМbТgIeQiNvJt, (2)

где L, М, Т, I … - условные обозначения основных величин данной системы;

a, b, g, e … - показатели размерности, каждый из которых может быть положительным или отрицательным, целым или дробным числом, а также нулём.

Показатель размерности - показатель степени, в которую возведена размерность основной физической величины, входящая в размерность производной физической величины.

По наличию размерности физические величины делятся на размерные и безразмерные.

Размерная физическая величина – физическая величина, в размерности которой хотя бы одна из основных физических величин возведена в степень, не равную нулю.

Безразмерная физическая величина – все показатели размерности равны нулю. Они не имеют единиц измерения, то есть ни в чем не измеряются (Например, коэффициент трения).

Шкалы измерений

Оценивание и измерение физических величин осуществляется при помощи различных шкал.

Шкала измерений - это упорядоченная совокупность значений физической величины, которая служит основой для ее измерения.

Поясним это понятие на примере температурных шкал. В шкале Цельсия за начало отсчета принята температура таяния льда, а в качестве основного интервала (опорной точки) — температура кипения воды. Одна сотая часть этого интервала является единицей температуры (градус Цельсия).

Различают следующие основные типы шкал измерений: наименований, порядка, разностей (интервалов), отношений и абсолютные шкалы.

Шкалы наименований отражают качественные свойства. Элементы этих шкал характеризуются только соотношениями эквивалентности (равенства) и сходства конкретных качественных проявлений свойств.

Примером таких шкал является шкала классификации (оценки) цвета объектов по наименованиям (красный, оранжевый, желтый, зеленый и т.д.), опирающаяся на стандартизованные атласы цветов, систематизированные по сходству. Измерения в шкале цветов выполняются путем сравнения при определенном освещении образцов цвета из атласа с цветом исследуемого объекта и установления равенства (эквивалентности) их цветов.

В шкалах наименований отсутствуют такие понятия, как «нуль», «единица измерений», «размерность», «больше» или «меньше». Шкала наименований может состоять из любых знаков (число, наименование, другие условные обозначения). Цифры или числа такой шкалы – не более чем кодовые знаки.

Шкала наименование позволяет составлять классификации, идентифицировать и различать объекты.

Шкала порядка (шкала рангов) - упорядочивает объекты относительно какого-либо их свойства в порядке убывания или возрастания.

Полученный при этом упорядоченный ряд называют ранжированным. Он может дать ответы на вопросы: «Что больше или меньше?», «Что хуже или лучше?». Более подробную информацию - на сколько больше или меньше, во сколько раз лучше или хуже – шкала порядка дать не может.

Примером шкалы порядка является построенная по росту группа людей, где каждый последующий ниже всех предыдущих; балльная оценка знаний; место спортсмена; шкалы баллов ветра (шкала Бофорта) и землетрясений (шкала Рихтера); шкалы чисел твердости (шкалы Роквелла, Бринеля, Виккерса) и т.д.

В шкалах порядка может быть или отсутствовать нулевой элемент (например, ранжированные классы точности приборов (0,1 и 2)).

С помощью шкал порядка можно измерять качественные, не имеющие строгой количественной меры, показатели. Особенно широко эти шкалы используются в гуманитарных науках: педагогике, психологии, социологии.

Шкала разностей (интервалов) содержит разность значений физической величины. Для этих шкал имеют смысл соотношения эквивалентности, порядка, суммирования интервалов (разностей) между количественными проявлениями свойств.

Данная шкала состоит из одинаковых интервалов, имеет условную (принятую по соглашению) единицу измерения и произвольно выбранное начало отсчета - нуль.

Примерами шкал интервалов в метрологии являются шкалы времени, начало которых выбрано по соглашению (от Рождества Христова), шкала расстояний, температурная шкала Цельсия и т.д.).

В этих шкалах установлены условные единицы измерения и условные нули, опирающиеся на какие-либо реперные точки.

Ре́пе́рные точки (русское название произошло от фр. repère) — точки, на которых основывается шкала измерений. В настоящее время шкала Цельсия использует единственную реперную точку — температуру таяния льда (0°С),

Результаты измерений по этой шкале (разности) можно складывать и вычитать.

Шкала отношений - это интервальная шкала с естественным (не условным) нулевым значением. Это единственная шкала, по которой можно установить значение измеренной величины. Она охватывает интервал значений n от 0 до ¥ и в отличие от шкалы интервалов, не содержит отрицательных значений. Это наиболее совершенная и информативная шкала. Результаты измерений в ней можно вычитать, умножать и делить.

Примерами шкал отношений являются шкалы большинства физических величин (длина, масса, сила, давление, скорость и др.)

Абсолютные шкалы - это шкалы отношений, в которых однозначно (а не по соглашению) присутствует определение единицы измерения. Абсолютные шкалы присущи относительным единицам (коэффициенты усиления, полезного действия и др.), единицы таких шкал являются безразмерными.

Наши рекомендации