Коацерватные капли (увеличено в 320 раз)
Академик А. И. Опарин считает, что именно эти коацерватные капли при определенных условиях могли дать начало образованию, первичных живых систем. Об этом свидетельствует ряд интересных свойств коацерватных капель, ставших известными в результате лабораторных исследований. В частности, эти капли обладают свойством улавливать и впитывать в свою структуру некоторые вещества из окружающего их низкомолекулярного раствора. В этом А. И. Опарин усматривает зачаточные формы процесса обмена веществ – важнейшего, по его мнению, атрибута жизни. Он подчеркивает, что в мире коацерватов имеют место полные аналоги процесса естественного отбора. По этому поводу он пишет:
Образовавшиеся в земной гидросфере коацерватные капли находились погруженными не просто в воде, а в растворе разнообразных органических веществ и неорганических солей. Эти вещества и соли адсорбировались коацерватными каплями и затем вступали в химическое взаимодействие с веществом самого коацервата. Происходили процессы синтеза. Но параллельно с ними шли и процессы распада. Скорость как тех, так и других процессов зависела от внутренней организации каждой данной капли. Более или менее длительно существовать могли только капли, обладавшие известной динамической устойчивостью, в которых при данных условиях внешней среды скорости синтетических процессов преобладали над скоростями разложения. В обратном случае капли были обречены на исчезновение. Индивидуальная история таких капель быстро обрывалась, и поэтому такие «плохо организованные капли» уже не играли никакой роли в ходе дальнейшей эволюции органической материи.[12]
С гипотезой А. И. Опарина в настоящее время трудно согласиться. Наличие аналогов обмена веществ и «естественного отбора» у коацерватов еще не есть доказательство того, что они могли привести к образованию первых примитивных живых организмов. Основными свойствами всякого живого организма, помимо обмена веществ, являются наличие «копировальной системы», «кода», передающего по наследству все характерные признаки данной особи. Между тем у коацерватов ничего подобного нет. Изобилие на первобытной земле всевозможных, в том числе и достаточно сложных, «строительных блоков», из которых построено все живое, еще не объясняет, как возникла и стала функционировать живая субстанция, представляющая собой даже в самых простых формах весьма сложную машину, а если говорить точнее, великолепно работающую современнейшую фабрику-автомат.
«Управляющая система» этой фабрики сосредоточена в одномерной структуре ДНК, хранящей информацию, записанную на языке, состоящем из четырех букв (оснований). Система осуществляет перевод этого языка на язык строящихся по ее командам белков, состоящий из 20 букв (аминокислот).
Как произошел качественный скачок от неживого к живому, гипотеза А. И. Опарина совершенно не объясняет. Только привлечение основных представлений современной молекулярной биологии, а также кибернетики, может помочь решению этой важнейшей, основной проблемы. Впрочем, пока не ясно, есть ли такое решение вообще.
Итак, центральной проблемой происхождения жизни на Земле является реконструкция эволюции механизма наследственности. Жизнь возникла только тогда, когда начал действовать механизм репликации. Ведь любая сколь угодно сложная комбинация аминокислот и других сложных органических соединений – это еще не живой организм. Можно, конечно, предположить, что при каких-то исключительно благоприятных обстоятельствах где-то на Земле возникла некая «праДНК», которая и послужила началом всему живому на Земле. Вряд ли, однако, это так, если гипотетическая «праДНК» была вполне подобна современной. Дело в том, что современная ДНК сама по себе совершенно беспомощна. Она может функционировать только при наличии белков-ферментов. Думать, что чисто случайно, путем «перетряхивания» отдельных блоков – многоатомных молекул, могла возникнуть такая сложнейшая машина, как «праДНК» и нужный для ее функционирования комплекс белков-ферментов, – это значит верить в чудеса. Куда, например, более вероятно предположить, что какая-нибудь мартышка, беспорядочно барабаня по клавиатуре пишущей машинки, случайно напечатает 66-й сонет Шекспира… Выход из этого затруднительного положения может состоять в том, что сам репликационный механизм за первые сотни миллионов лет развития «пражизни» претерпел огромную эволюцию от простого к сложному. К сожалению, успехи в этой важнейшей области пока незначительны.
Рич, однако, указал на значительное сходство строения молекул ДНК и РНК, которые тем не менее выполняют в клетке совершенно различные функции. ДНК является носителем генетической информации, РНК служит для превращения этой информации в реальные молекулы белка, т. е. для непосредственного синтеза видовоспецифического белка.
Особого внимания заслуживает открытие у вируса табачной мозаики и у некоторых других вирусов не двух, а только одной нуклеиновой кислоты, более простой – РНК. Эта РНК оказалась способной осуществлять функции обеих нуклеиновых кислот – передачи наследственной информации и синтеза белка.
Можно допустить, что обе нуклеиновые кислоты произошли от одной общей более примитивной молекулы. Усложняясь и специализируясь в процессе эволюции, эта «прануклеиновая» кислота превратилась в функционально различные типы молекул ДНК и РНК. Возможно, что этой первичной нуклеиновой кислотой могла быть молекула, близкая к более простой РНК. Подобно РНК вируса табачной мозаики она обладала способностью к передаче наследственной информации и к синтезу белка. Возможно также, что вирусы, содержащие только одну РНК (филогенетически более раннее образование), следует рассматривать как современные модификации древней, примитивной формы жизни.
Все это может пролить некоторый свет на пути возникновения и развития живых существ от более простых форм управления и примитивной жизни к более сложным формам. Если небелковая («неживая») молекула РНК в подходящей среде образует живые системы, то не на этом ли пути можно обнаружить «мостик» между неживой и живой природой? Решающее слово в этом важнейшем вопросе принадлежит различным будущим биохимическим и генетическим исследованиям.
Для образовавшихся на планете первых примитивных организмов высокие дозы жесткой радиации могут представлять смертельную опасность, так как мутации будут происходить так быстро, что естественный отбор не поспеет за ними.
Мы уже упоминали в гл.5, что примерно один раз в сотни миллионов лет около Солнца вспыхивает сверхновая звезда, и в нашей планетной системе уровень космических лучей увеличивается в десятки и сотни раз. Однако для сравнительно короткоживущих примитивных жизненных форм такое увеличение уровня жесткой радиации не представляет серьезной опасности. Кроме того, длительность периодов повышенной интенсивности космических лучей сравнительно невелика (десятки тысяч лет). Другим возможным источником губительной жесткой радиации мог быть повышенный уровень радиоактивности на первобытной Земле. Однако расчеты показывают, что этот уровень вряд ли превышал современный более чем в 10 раз. Солнечное рентгеновское излучение в те времена, так же как и сейчас, не проникало через толщу атмосферы. И только один вид жесткой радиации имел высокую интенсивность – ультрафиолетовое излучение Солнца в области длин волн 0,29 – 0,24 мкм, для которого первобытная атмосфера Земли, в отличие от современной, была прозрачной.
Так как Солнце в те времена излучало примерно так же, как и сейчас, мы можем оценить поток его излучения на Земле в указанной спектральной области. Этот поток оказывается равным 5 103 эрг/(см2 • с), т. е. примерно в 300 раз меньше полного потока солнечного излучения. Смертельная доза такой радиации для большинства современных микроорганизмов составляет 105–106 эрг/см2. Радиационная опасность отсутствует в том случае, когда за время жизни одного поколения живых организмов доза радиации меньше приведенной величины. Имеются некоторые основания полагать, что время жизни первобытных, примитивных организмов было достаточно велико, например, несколько недель. Если считать, что для них доза в 103 эрг/см2 была опасной, то поток ультрафиолетовой радиации должен быть не больше 10-3 эрг/(см2 • с), т. е. в 5 млн. раз меньше реального потока солнечного излучения. Отсюда следует важный вывод, что первичные живые организмы могли образоваться и развиваться только на достаточно большой глубине под водой. Слой воды в несколько десятков метров уменьшает поток ультрафиолетового излучения в десятки миллионов раз и тем самым обеспечивает необходимую для развития живых организмов «броню». Это является еще одним важным аргументом в пользу утверждения, что жизнь на нашей планете возникла и развивалась первоначально в воде, причем на достаточно большой глубине.
Мы остановились только на некоторых основных вопросах возникновения жизни на Земле и по аналогии – на других планетах. В этой проблеме ещё очень многое неясного. Например, все белковые соединения, входящие в состав живого вещества, имеют «левую асимметрию». Что это означает? Дело в том, что большое количество органических соединений может существовать в двух формах. Эти формы отличаются одна от другой противоположной ориентацией отдельных группировок атомов – некоторая группировка атомов в одной форме является зеркальным изображением соответствующей группировки в другой (рис. 55).
Рис. 55
«Левые» и «правые» органические молекулы
Когда происходит лабораторный синтез такого соединения, всегда «правые» и «левые» формы присутствуют в одинаковом количестве, так как «наращивание» молекул путем присоединения атомов и атомных группировок происходит случайным образом. Почему же в «живых» органических соединениях всегда присутствуют только «левые» формы?
Еще Пастер указал, что «асимметричный синтез» может происходить при наличии какого–нибудь природного асимметричного фактора. И действительно, если в лабораторных условиях синтезировать некоторые органические соединения под воздействием поляризованного по кругу света, то в зависимости от направления вращения светового вектора получаются преимущественно «правые» или «левые» формы синтезируемых веществ. К сожалению, таким способом трудно объяснить асимметрию «живых» молекул, так как в солнечном излучении отсутствует сколько-нибудь значительная составляющая, поляризованная по кругу. Впрочем, нельзя исключать того, что после прохождения значительной толщи первобытного океана, вода которого, быть может, обладала соответствующими оптическими свойствами, такая составляющая и возникала. Этот вопрос требует специального исследования.
Другой возможный путь асимметричного синтеза был указан Берналом. При синтезе некоторых органических веществ на поверхности оптически активных кристаллов (например, кварца) могут возникать формы определенной симметрии. Следует, однако, отметить, что в природе распространены как «правые», так и «левые» кристаллы. Поэтому не совсем ясно, каким образом в живом веществе молекулы имеют асимметрию только одного знака и вряд ли асимметричный синтез в естественных условиях первобытной Земли мог происходить таким способом. Так или иначе, вопрос о причине асимметрии живой субстанции пока остается открытым.
Заслуживает внимания еще такой вопрос: почему жизнь на Земле не возникает из неживого вещества в настоящее время? И вообще – жизнь на Земле возникла однократно или многократно? Против возможностей повторного зарождения жизни на нашей планете из неживой субстанции можно выдвинуть такой серьезный аргумент: ранее возникшая жизнь не даст возможность новому зарождению жизни. Микроорганизмы и вирусы буквально съедят уже первые ростки новой жизни. Другим аргументом против «повторного» зарождения жизни является ничтожно малая вероятность этого процесса. Ведь нельзя исключить возможность того, что жизнь на Земле возникла случайно (см. ниже).
Существует еще одно обстоятельство, на которое, может быть, стоит обратить внимание. Хорошо известно, что все «живые» белки состоят из 20 аминокислот, между тем как всего аминокислот известно свыше 100. Не совсем понятно, чем отличаются эти 20 аминокислот от остальных своих «собратьев». (Впрочем, некоторые количества других аминокислот имеются у низших организмов. Следует, однако, заметить, что у этих организмов ДНК отличаются от обычных.) Нет ли какой-то глубокой связи между происхождением жизни и этим удивительным явлением? Мы еще раз должны подчеркнуть, что центральная проблема возникновения жизни на Земле – объяснение качественного скачка от «неживого» к «живому» – все еще далека от ясности. Недаром один из основоположников современной молекулярной биологии проф. Крик на Бюраканском симпозиуме в сентябре 1971 г. сказал: «Мы не видим пути от первичного бульона до естественного отбора. Можно прийти к выводу, что происхождение жизни – чудо, но это свидетельствует только о нашем незнании».
Все же не будем отчаиваться – и эта твердыня непознанного будет взята; порукой этому является гигантский прогресс современной молекулярной биологии.
14. От сине-зеленых водорослей до человека
Выше мы уже говорили, что жизнь на Земле возникла еще тогда, когда ее возраст исчислялся всего лишь сотнями миллионов лет. Носителями жизни в ту отдаленную эпоху были одноклеточные, лишенные клеточных ядер организмы – бактерии и сине-зеленые водоросли. Первые клетки с ядрами появились около 3,5 миллиардов лет тому назад (ср. «Космический календарь» – см. с. 278, табл. 12). Потребовалась половина времени эволюции Земли, чтобы это произошло – хорошая иллюстрация медленности процесса эволюции жизни на Земле. Примерно к этому же времени относится и появление многоклеточных организмов, по-видимому, возникших из колоний одноклеточных с прогрессивно дифференцирующимися функциями клеток. С этого времени дальнейшая эволюция характеризовалась огромным многообразием форм.
Существующая периодизация развития жизни на Земле дана в табл. 7, где указаны также эпохи начала соответствующих периодов.
Таблица 7
В протерозойскую эпоху жизнь на Земле начала становиться космическим фактором. К этому времени относится начало формирования биосферы Земли, полностью преобразившей наружные слои поверхности нашей планеты и ее атмосферу. Жизнедеятельность организмов привела к накоплению в атмосфере Земли свободного кислорода (фотосинтез!) и извлечению из нее углекислоты. До этого организмы развивались в лишенной кислорода среде. Фотосинтез начался около 3,5 миллиарда лет назад.
Первоначально жизнь на Земле развивалась только в ее гидросфере. Выход жизни на сушу – важнейший этап в ее развитии. Это произошло в Кембрийском периоде около 500 миллионов лет назад, когда возраст Земли был только на 10 % меньше нынешнего! До чего же медленно шла эволюция жизни на Земле! Могучей движущей силой этой эволюции был дарвиновский естественный отбор, сочетающийся со способностью организмов к мутациям. В свою очередь отбор определялся ограниченностью ресурсов сформировавшейся и развивавшейся биосферы, противодействующей чудовищной потенциальной способности жизни к неограниченной экспансии. Жесткий естественный отбор невероятно развивал способность видов к адаптации в условиях изменяющейся окружающей среды. Например, обусловленное жизнедеятельностью организмов изменение состава атмосферы в сторону насыщения ее кислородом оказалось гибельным для большинства анаэробных форм. Ведь свободный кислород с его огромной химической активностью – смертельный яд для таких организмов. И только немногие формы смогли не только приспособиться к изменившимся атмосферным условиям, но и использовать их для своего дальнейшего развития. Так жизнь стала «аэробной».
Бурное развитие жизни началось в палеозойскую эру. Мы уже упоминали, что в Кембрийский период началась колонизация суши. По-видимому, это происходило в мелководных лагунах, где на окаймляющей их прибрежной кромке появились пленки водорослей. В этот период море кишело уже довольно высокоорганизованными животными – трилобитами, которых насчитывалось свыше тысячи видов. Это были предки нынешних членистоногих. У трилобитов уже развился орган зрения. Отдельные особи достигали размеров порядка метра. Наряду с трилобитами (ныне полностью вымершими) кембрийские моря кишели иглокожими, моллюсками и плеченогими. Появились первые раковины.
В силурийском периоде растения покоряют сушу. Этот процесс получил особенное развитие в Девоне. Растительный мир обогатился папоротниками, хвощами. В морях появились первые рыбы. Первые животные вышли на сушу. В следующем каменноугольном периоде произошел небывалый расцвет растительного царства, чему, возможно, способствовала увеличившаяся вулканическая активность Земли, сопровождающаяся значительным выделением углекислоты. Это было царство амфибий, уже освоивших размножение на суше. В это же время появились первые пресмыкающиеся. Воздух наполнился летающими насекомыми. После пермского периода, сопровождавшегося значительными климатическими изменениями и обусловленными ими значительными изменениями растительного и животного мира, наступила мезозойская эра. Это было царство рептилий, достигших небывалого разнообразия форм. Но уже в начале мезозоя появились первые млекопитающие. Катастрофически быстрое повсеместное вымирание динозавров уже давно привлекает к себе всеобщее внимание. Было выдвинуто много гипотез, объясняющих причину этой настоящей катастрофы, постигшей жизнь на Земле (см. с. 75, гл.5 и конец этой главы).
Наступившая новая кайнозойская эра ознаменовалась очередной перестройкой биосферы. Строение земной поверхности приблизилось к современному. Наступило царство млекопитающих. И вот пришла эра человека. Это случилось, по-видимому, около 15 миллионов лет назад, когда появился наш самый отдаленный предок – полуобезьяна-получеловек рамапитек, ископаемые остатки которого обнаружены в Индии. Время появления человека 2,7 млн. лет назад получается на основании расчетов скорости изменений в генной структуре человека.
Поражает чудовищное богатство процесса видообразования в течение эволюции жизни на Земле. Создается впечатление о какой-то фантастической расточительности и даже «избыточности» формообразования в живой природе. В самом деле, оценки палеонтологов приводят к значению ~ 500 миллионов видов, существовавших за все время эволюции жизни на Земле! Заметим, что в настоящее время насчитывается около 2 миллионов видов (из которых ~ 75 % – насекомые). Любопытно, что число видов современных млекопитающих достигает 3500, из которых 2500 видов грызунов.
Как уже неоднократно подчеркивалось, развитие жизни на Земле привело к коренной перестройке поверхностных слоев земли и ее атмосферы. В этой связи любопытно привести данные о суммарной массе живого вещества на Земле. Соответствующие данные, полученные по оценке советских авторов, приведены в табл. 8.
Таблица 8
Из этой таблицы видно, что основная масса живого вещества сосредоточена в зеленых растениях. Обращает на себя внимание относительная бедность мирового океана живым веществом. Любопытно еще отметить, что суммарная масса всего живущего человечества около 100 миллионов тонн – величина не такая уже малая!
В нашу задачу, конечно, не может входить сколько-нибудь подробное описание эволюции жизни на Земле и связанная с этим эволюция биосферы. Это отдельная и большая тема.[13] Но мы должны обратить внимание на то, что эта эволюция представляет собой неразрывную последовательность процессов, причем каждый элемент этой последовательности реализовывался путем огромного количества случайных событий. В процессе этой эволюции природа как бы «пробовала» очень много вариантов, из которых большинство приводило к тупикам. Но подобно тому, как ручеек воды причудливо прокладывает свое русло через пересеченную местность, общее направление эволюции от примитивных сине-зеленых водорослей к человеку прослеживается вполне уверенно. В этом общем направлении ни одно из звеньев эволюционного процесса не может быть выброшено.
Рассмотрим в виде примера пресмыкающихся, которые стали бурно размножаться на суше в середине каменноугольного периода. Это им принадлежит великое «изобретение» – откладывание заключенных в плотную скорлупу яиц, из которых вылуплялось потомство. Один знаток рептилий в этой связи очень точно заметил: «…уже в первом яйце, отложенном первой рептилией на суше, заключалось и пение птиц, и человеческая мысль».[14] И мы имеем все основания сказать, что отдаленными предками человека являются рептилии. Ну, а что было бы, если бы не случилось великое вымирание динозавров в конце мелового периода, вымирание, обусловленное какой-то случайной, скорее всего, – космической причиной? Совершенно очевидно, что эволюция жизни на Земле пошла бы как-то иначе. Во всяком случае млекопитающие не получили бы такого фантастического развития, как это случилось после освобождения ниш биосферы, до этого занятых рептилиями. И очень могло быть, что их эволюция зашла бы в тупик.
Мы неоднократно подчеркивали, что движущей силой эволюции жизни на Земле является дарвиновский естественный отбор в комбинации с непрерывно происходящими мутациями. Но является ли это единственным фактором эволюции? До сих пор этот вопрос служит предметом оживленных и даже ожесточенных дискуссий в эволюционной биологии. Среди накопившегося огромного количества фактов о развитии жизни на Земле есть и такие, которые явно противоречат концепции естественного отбора, во всяком случае, в его упрощенной форме, к сожалению, весьма распространенной у биологов. Известны, например, опыты, когда группе крыс предоставляли неограниченные возможности питания. Сперва они быстро размножались, но потом без всякой видимой причины размножение прекратилось и крысы стали вырождаться. Похоже на то, что им как-то вдруг стало «скучно жить». А всем известные эпидемии массовых самоубийств мелких грызунов леммингов – как их уложить в простую схему естественного отбора?
Не все благополучно и во взаимоотношениях эмбриологии с эволюционной теорией. Почему, например, у некоторых зародышей на какой-то стадии их развития появляются признаки, соответствующие эволюционно более поздним стадиям развития? Этот список недоразумений можно было бы приумножить. Создается впечатление, что наряду с естественным отбором в эволюции жизни на Земле действуют еще какие-то факторы, роль которых пока еще окончательно не выяснена. Или, во всяком случае, естественный отбор есть процесс неизмеримо более сложный, чем это обычно полагают.
Все это еще более усложняет и без того невероятно сложный процесс эволюции жизни и делает его еще более неповторимым, и, если можно так выразиться, «капризным». Если даже где-то на какой-нибудь подходящей планете и возникла когда-то жизнь, ее развитие, обусловленное чудовищно длинной цепью других случайных обстоятельств, практически никогда не повторит развитие жизни на Земле. Не может быть и речи о «тиражировании» эволюции жизни во Вселенной. (Очень удачный термин «тиражирование» предложен Я. И. Фурманом.) Вероятность такого «тиражирования» неизмеримо меньше, чем выигрыш автомобиля в спортлото. Ситуацию совершенно не меняет то обстоятельство, что очагов жизни во Вселенной может быть очень много. Например, в Галактике число таких очагов может быть ~ 108, если сделать «сверх-оптимистическое» предположение, что почти на каждой планете обязательно возникает жизнь. Дело в том, что вероятность реализации той же самой последовательности случайных событий, которая на Земле привела к появлению человека, невообразимо меньше, чем 10-8.
Единственное, что мы можем сказать, – это то, что однажды возникшая жизнь будет эволюционировать в сторону усложнения и повышения ее адаптации к меняющимся условиям внешней среды. Однако никаких более конкретных соображений о характере, этапах и конечных результатах такой эволюции сказать нельзя.
Остановимся, наконец, на некоторых моментах, связанных с заключительным этапом эволюции жизни на Земле, который привел к появлению человека – носителя разумной жизни. Несомненно, что возникновение разумной жизни ознаменовало собой новый важный этап в развитии материи во Вселенной (неживая материя – жизнь – разумная жизнь). Современная палеонтология прослеживает отдаленных предков человека до полуобезьян рамапитека и кениатека (15 миллионов лет). Заметим, что по мере развития палеонтологии эпоха существования предков человека все более отодвигается назад. Давно ли было время, когда древнейшим предком человека считали питекантропа, возраст которого всего лишь порядка сотни тысяч лет? Как же произошло выделение человека как ветви от ствола приматов? Когда и при каких обстоятельствах?
Конечно, огромную и даже решающую роль в этом процессе сыграл труд. Но все же – почему был выделен один (а может быть, и не один) вид приматов? По какому признаку и по каким причинам? На этой самой ранней заре развития труд, рассматриваемый как сознательная коллективная деятельность, еще не мог играть своей решающей роли. Имеется множество гипотез, пытающихся объяснить, чем же отличались эти первые обезьяны, через миллионы лет превратившиеся в людей, от своих четвероруких сородичей. Автор этой книги, например, несколько лет назад с удивлением узнал, что причиной могли быть… паразиты, одолевавшие некий вид обезьян. Последние вынуждены были много чесаться, что сперва освободило, а потом и развило их передние конечности. И пусть читатель не подумает, что это какая-то шутка или мистификация – речь идет об оригинальной гипотезе, во всяком случае не худшей, чем другие. Очень может быть, что в становлении человека не малую, а может быть, и решающую роль сыграл его величество случай.
Думать, что возникновение мыслящих существ есть фатально неизбежный заключительный этап эволюции жизни на Земле – значит, стоять на чисто идеалистических позициях. Ибо это означало бы веру, что вся Вселенная имела конечной целью своего развития появление мыслящих существ. Но Вселенная существует объективно, вне сознания и воли человека. Вспомним пушкинское: «… и равнодушная природа…». Александр Сергеевич хорошо понимал то, что не могут или не желают понять некоторые не в меру оптимистически настроенные адепты повсеместной распространенности разумной жизни во Вселенной. Вывод из приведенных выше рассуждений прост, хотя, может быть, и печален: совершенно необязательно, чтобы однажды возникшая на какой-нибудь планете жизнь на некотором этапе своей эволюции стала разумной. На Земле это случилось по каким-то пока неясным, скорее всего, случайным (как и все в конкретном процессе эволюции жизни) причинам после четырех миллиардов лет развития. И мы не можем сделать оценку вероятности того, что однажды возникшая на какой-то планете жизнь когда-нибудь станет разумной. Очень может быть, что эта вероятность исчезающе мала.
Не следует забывать, что разум человека обладает огромной избыточностью. Это означает, что для сохранения вида и для обеспечения своего существования в конкретной борьбе с другими животными более чем достаточно разума неандертальца, не говоря уже о кроманьонце. И невольно вспоминается чудовищно гипертрофированные защитные средства хищных гигантских рептилий мезозоя. Эти средства были неправдоподобно избыточны. Природа эволюционного процесса приводит иногда к большой расточительности. И все же может статься, что мозг человека, рога трицератопса и резцы саблезубого тигра имеют одинаковую эволюционную природу…
Так или иначе, но развив свой мозг, человек скачком вышел из равновесия с окружающей средой-биосферой, которая сформировалась за несколько миллиардов лет и частью которой он являлся. Этому процессу особенно способствовало наступление технологической эры, происшедшее всего каких-то 350 лет назад. За этот ничтожный срок развитие человечества приняло подлинно взрывной характер. Об этом речь будет идти в следующей части нашей книги. Сейчас мы только подчеркнем, что в итоге этого взрывного процесса человек стал реальной угрозой самому существованию биосферы. Его неконтролируемая деятельность уже привела к ряду необратимых последствий в экологии. Например, практически исчезли крупные хищники, радикально изменились условия взаимосвязи между различными экологическими нишами, наконец, человечество стоит перед реальной угрозой ядерного самоуничтожения. Под угрозу поставлены атмосфера и гидросфера Земли. И только вера в то, что человек есть действительно разумное существо, позволяет нам надеяться, что при лучшей организации общества человечество придет в уже новое состояние равновесия с окружающей средой.
Мы невольно отвлеклись от нашей темы, но, как говорится, «у кого что болит». Заметим только в заключение, что возникновение современной технологической эры вряд ли было фатально неизбежным. Ведь существовали же тысячелетия высококультурные народы (например, майя) без современной технологии. Все дело, по-видимому, в идеологии и философии, которые исповедует данное общество. Но это уже другой вопрос.[15]
15. «Есть ли жизнь на Земле?»
Волнующий вопрос о жизни на других планетах занимает умы астрономов (и не только астрономов) вот уже несколько столетий. Возможность самого существования планетных систем у других звезд только сейчас, как мы видели в гл. 9, становится предметом серьезных научных исследований. Раньше же вопрос о жизни на других планетах был областью чисто умозрительных заключений. Между тем Марс, Венера и другие планеты Солнечной системы уже давно были известны как несамосветящиеся твердые небесные тела, окруженные атмосферами. Давно стало ясно, что в общих чертах они напоминают Землю, а если так, почему бы на них не быть жизни, даже высокоорганизованной и, кто знает, разумной?
Однако существует большая дистанция между догадками и реальным знанием. Нет сейчас смысла останавливаться на огромном количестве гипотез и литературных произведений, посвященных этой увлекательной проблеме. Наша задача – попытаться кратко изложить ее современное состояние.
Вполне естественно считать, что физические условия, господствовавшие на «только что» образовавшихся из первоначальной газопылевой среды планетах земной группы (в эту группу, как известно, входят Меркурий, Венера, Земля и Марс), были очень сходными, в частности их первоначальные атмосферы были одинаковы. Поэтому, вообще говоря, можно ожидать, что условия для возникновения живой материи на этих планетах были если не одинаковыми, то похожими.
В предыдущей главе мы определили живую материю как сложный молекулярный агрегат, способный к «печатанию» себе подобных систем и подверженный мутациям. Безусловно, такой агрегат мог возникнуть на основе определенных химических реакций, протекающих в определенных условиях. Поэтому проблема возникновения жизни есть в значительной степени проблема химическая.
Основными атомами, входящими в состав тех молекулярных комплексов, из которых образовалось живое вещество, являются водород, кислород, азот и углерод. Роль последнего особенно важна. Углерод – четырехвалентный элемент, способный образовывать с другими атомами кратные связи и соединяться одинаково легко с водородом и кислородом. Поэтому только углеродистые соединения приводят к образованию длинных молекулярных цепей с богатыми и изменчивыми боковыми ответвлениями. Именно к такому типу принадлежат различные белковые молекулы.
В популярной литературе часто приходится читать, что на других планетах жизнь может возникнуть не обязательно на углеродной основе. «Заменителем» углерода обычно называют кремний. Кремний довольно обилен в космосе. В атмосферах звезд и туманностях его содержание (по числу атомов) всего лишь в 5–6 раз меньше, чем углерода, т. е. достаточно велико. Вряд ли, однако, кремний может играть роль «краеугольного камня» жизни. По некоторым причинам его соединения не могут обеспечить такой богатый «ассортимент» боковых ответвлений в сложных молекулярных цепочках, как у углеродных соединений. Между тем богатство и сложность таких боковых ответвлений именно и обеспечивают огромное разнообразие свойств белковых соединений, а также исключительную «информативность» ДНК, что совершенно необходимо для возникновения и развития жизни.
Как мы видели в предыдущей главе, важнейшим условием для возникновения и развития жизни на планете является наличие на ее поверхности достаточно большого количества жидкой среды. В такой среде находятся в растворенном состоянии органические соединения и могут создаваться благоприятные условия для синтеза на их основе сложных молекулярных комплексов. Кроме того, жидкая среда необходима только что возникшим примитивным живым организмам для защиты от губительных ультрафиолетовых лучей, которые в те времена могли свободно проникать до поверхности недавно сформировавшейся планеты.
Из самых общих соображений следует ожидать, что такой жидкой оболочкой может быть только вода и жидкий аммиак. Образование последнего требует сравнительно низкой температуры поверхности планеты. Вообще значение температуры первоначальной планеты для возникновения на ней жизни весьма велико. Если температура достаточно высока, например выше 100 °C, а давление атмосферы не очень велико, на ее поверхности не может образоваться водная оболочка, не говоря уже об аммиачной. В таких условиях говорить о возможности возникновения жизни на планете, конечно, не приходится.
Исходя из сказанного, мы можем ожидать, что условия для возникновения в отдаленном прошлом жизни на Марсе и Венере могли быть, вообще говоря, благоприятными.
Вряд ли они были благоприятными на Меркурии, так как его температура относительно высока, а масса мала, что способствует быстрой диссипации газов, и прежде всего водорода, необходимых для возникновения на его поверхности водной оболочки. На рис. 56 приведена фотография Меркурия, полученная с расстояния 200000 км с борта американской автоматической межпланетной станции «Маринер-10». Поражает сходство рельефа поверхности Меркурия и Луны. Жидкой оболочкой на Венере и Марсе могла быть только вода, а не аммиак, что следует из анализа физических условий на этих планетах в эпоху их формирования. Но возможность еще не означает действительность. Вопрос о том, есть ли (или была) жизнь на Марсе и Венере, должен быть, прежде всего, решен астрономическими наблюдениями и исследованиями при помощи космических аппаратов.
Очень трудно получить путем астрономических наблюдений явные указания на наличие жизни на той или другой планете. Не следует забывать, что даже в самые хорошие телескопы при наиболее благоприятных условиях минимальные размеры деталей, еще различимых на поверхности Марса, равны 100 км.
Земная атмосфера, вернее ее неспокойствие, является основной помехой, не позволяющей наблюдать на поверхностях планет детали меньших размеров. Коренное изменение этой ситуации произошло только после того, как американская автоматическая станция «Маринер-4» получила первые фотографии поверхности Марса с близкого расстояния (см. гл. 16).
Рис 56