Физическая и химическая адсорбция
Адсорбция – поглощение веществ из растворов или газов поверхностным слоем твердого тела или жидкости. Движущей силой процесса является наличие на поверхности некомпенсированных сил межатомного взаимодействия, за счет чего и притягиваются молекулы адсорбированного вещества – адсорбата. Происходит не только снижение поверхностной энергии, но и образование на поверхности различной по составу пленки.
Термодинамическое состояние атомно-чистой поверхности способствует активному протеканию процесса адсорбции. Известно, что на чистой металлической поверхности содержится около 105 адсорбционных позиций, приходящихся на 1 см2.
Различают физическую и химическую адсорбцию веществ на поверхности. Возможны и промежуточные виды взаимодействий на границе раздела фаз.
Физическая адсорбция. Адсорбированный слой связан с поверхностью слабыми межатомными связями, например силами Ван-дер-Ваальса. Теплота физической адсорбции, как правило, невелика и редко превосходит несколько десятков кДж/моль (~ 40 кДж/моль). Процесс физической адсорбции обратим, относится к неактивируемым, протекает очень быстро, как только молекулы адсорбата окажутся на поверхности твердого или жидкого тела.
Наиболее часто физическую адсорбцию связывают с взаимодействием поверхности с газовой фазой. Количество адсорбированного газа снижается при уменьшении давления и возрастании температуры.
Простейшие уравнения мономолекулярной адсорбции предложены Генри и Ленгмюром.
(2.5.)
Уравнение Генри (так называемая изотерма Генри) справедливо при очень низких степенях заполнения Θ молекулами адсорбата однородной поверхности адсорбента. Коэффициент пропорциональности кзависит главным образом от температуры и характера взаимодействия адсорбента с адсорбатом.
Изотерма Генри представляет собой прямую линию 1 (рис 2.1, а). С увеличением давления Р рост адсорбированного мономолекулярного слоя замедляется. Молекула адсорбата испытывает трудности в закреплении на еще не занятом пространстве поверхности адсорбента.
Рис.2.1. Зависимость изменения количества адсорбированного вещества от давления (а) и температуры (б) (пояснения в тексте)
Изотерма приобретает выпуклый характер 2, а значение в стремится к единице (см. рис.2.1, а). Выпуклые изотермы описываются уравнением Ленгмюра,где а – адсорбционный коэффициент, аналогичный по физическому смыслу константе к в уравнении (2.5).
Следует отметить, что уравнение Ленгмюра справедливо только для мономолекулярной адсорбции на однородной поверхности, возможностью притяжения молекул адсорбата между собой и их подвижностью вдоль поверхности адсорбента пренебрегают. При дальнейшем увеличении давления адсорбата происходит заполнение второго, третьего и других слоев. Процесс переходит в полимолекулярную адгезию.
Поверхность твердых адсорбентов в основном неоднородна. Одни участки благоприятны для адсорбции, другие – наоборот. С ростом давления адсорбата полимолекулярная адсорбция происходит одновременно по всей поверхности с различной степенью интенсивности.
Процесс адсорбции почти всегда сопровождается выделением теплоты, которую называют теплотой адсорбции. Прочность адсорбционного слоя может быть оценена по величине теплоты адсорбции. С увеличением теплоты прочность адсорбции возрастает. При переходе к полимолекулярной адсорбции теплота адсорбции приближается к теплоте конденсации адсорбата.
Температурные условия оказывают большое влияние на протекание процесса физической адсорбции. Высокая подвижность молекул на поверхности при повышении температуры приводит к десорбции образующегося слоя. Дальнейшее повышение температуры может переводить физическую адсорбцию в химическую – хемосорбцию, имеющую более прочные связи.
На рис. 2.1, б приведена качественная зависимость адсорбции газовой среды от температуры при постоянном давлении. При низких температурах изобара 1 описывает физическую адсорбцию. При достижении определенной температуры возможен процесс перехода физической адсорбции к хемосорбции. Происходит рост адсорбируемого вещества (кривая 2). При заполнении всей поверхности адсорбатом снова начинает снижаться количество адсорбированного вещества (кривая 3). Адсорбция в области 1 обратима, а в области 2 необратима. В случае охлаждения системы процесс переходит из области 3 в область 4.
Слабые междуатомные связи на поверхности при физической адсорбции, по-видимому, в малой степени способны уравновесить некомпенсированные связи поверхностных атомов. Соответственно этому не следует ожидать значительного снижения уровня свободной поверхностной энергии. При подготовке поверхности изделий для нанесения покрытий следует учитывать слабые связи физически адсорбированных веществ(твердых, жидких и газообразных).
Химическая адсорбция. Хемосорбция представляет собой процесс поглощения поверхностью жидкого или твердого тела веществ из окружающей среды, сопровождающийся образованием химических соединений. При хемосорбции выделяется значительное количество теплоты. Обычно теплоты хемосорбции лежат в пределах 80 – 125 кДж/моль. Взаимодействие кислорода с металлами (окисление) дает значительно более высокие значения теплоты, достигающие 400 кДж/моль.
Подобно химическим реакциям хемосорбция требует для своего протекания значительной энергии активации. Следовательно, при увеличении температуры процесс хемосорбции ускоряется. Происходит так называемая активируемая адсорбция. Хемосорбция относится к избирательным процессам и зависит от химического сродства абсорбента и адсорбата, которое наряду с температурой определяет скорость протекания реакции. В одних случаях реакции протекают медленно, в других очень быстро. Например, при взаимодействии газов с чистыми металлами или металлоподобными поверхностями наблюдается исключительно быстрая хемосорбция, что связано со слабой насыщенностью связями поверхностных атомов. Хемосорбция протекает при минимальных значениях энергии активации. Хемосорбция на твердых поверхностях зависит от кристаллографической ориентации зерен, наличия различных дефектов и др. Хемосорбция начинается на наиболее активных участках поверхности. Принято считать, что хемосорбция происходит до тех пор, пока вся поверхность не покроется мономолекулярным слоем адсорбата. По сравнению с физической адсорбцией хемосорбция чувствительна к давлению окружающей среды.
Наличие на поверхности хемосорбированных пленок в значительной мере уравновешивает некомпенсированные оборванные связи поверхностных атомов. Поверхностная энергия при этом достигает минимальных значений, что следует учитывать при подготовке поверхностей для нанесения покрытий. Для удаления хемосорбированных поверхностных соединений (загрязнений) требуются значительные энергетические воздействия.