Основы теории и технологии прокатки
Скорость деформации
Скорость деформации в ОМД определяется относительным изменением размеров тела в единицу времени.
При осадке параллелепипеда (Рисунок 13) скорость деформации определится:
, (21)
где − текущее уменьшение высоты;
− высота параллелепипеда;
− относительная деформация.
Рисунок 13- Схема к расчету скорости деформации.
Выражение является, ни что иное как, линейная скорость деформации, то есть скорость продвижения инструмента в направлении деформации:
. (22)
Подставляя полученное выражение в формулу определения скорости деформации, получим:
. (23)
При прокатке (Рисунок 14) средняя степень деформации:
Рисунок 14 - Схема к определению скорости деформации.
Время прокатки равно длине очага деформации поделенной на окружную скорость валков: , тогда
. (24)
На основании многочисленных исследований можно считать, что при горячей обработке влияние скорости деформации на пластичность металлов определяется совокупным действием двух факторов. С одной стороны, с ростом скорости деформации пластичность понижается, поскольку увеличивается интенсивность упрочнения. С другой стороны, при увеличении скорости деформации возрастает нагрев. Значительная часть энергии деформации превращается в теплоту, что повышает температуру обрабатываемого тела. Это стимулирует разупрочнение и, следовательно, увеличение пластичности.
В условиях холодной обработки малые скорости деформации слабо проявляют свое влияние на пластичность металлов. Высокие скорости способствуют нагреву деформируемого тела, что приводит к разупрочнению и увеличению пластичности, что можно учитывать скоростным коэффициентом .
Внешнее трение
Трение может быть полезным и вредным - эту аксиому человек освоил еще на заре цивилизации. Ведь два самых главных изобретения - колесо и добывание огня - связаны именно со стремлением уменьшить и увеличить эффекты трения. Однако понимание природы трения и законов, которым подчиняется это явление, возникло не так уж давно и, к сожалению или к счастью, еще далеко от совершенства.
Первым, кто описал закон трения, был Леонардо Да Винчи, годы жизни 1452-1519, утверждал, что сила трения, возникающая при контакте тела с поверхностью другого тела, пропорциональна нагрузке, силе прижатия, направлена против направления движения и не зависит от площади контакта. Модель Леонардо была переоткрыта через 180 лет Г. Амонтоном и получила окончательную формулировку в работах Ш.О. Кулона (1781). Амонтон и Кулон ввели понятие коэффициента трения как отношения силы трения к нагрузке, придав ему значение физической константы, полностью определяющей силу трения для любой пары контактирующих материалов:
, (25)
где − сила трения;
− нормальное усилие, сила прижатия;
− коэффициент трения.
Значения коэффициента трения для различных материалов (сталь по стали, сталь по бронзе, чугун по коже и т.д.) входят в стандартные инженерные справочники и служат базой для традиционных технических расчетов.
В ОМД смещенный объем стремится переместиться по поверхности инструмента. При этом возникают силы трения, препятствующие этому движению. Такое трение называется контактным или внешним.
Контактное трение, в ОМД, выполняет две функции:
- полезная – без контактного трения невозможна прокатка;
- вредная – препятствие свободному заполнению металлом рабочего пространства инструмента.
Переходя к элементарной площадке контакта закон Амонтона можно записать:
, (26)
где − удельная сила трения;
− нормальное удельное давление.
Если тело находится в условиях пластической обработки, то удельное усилие в тонких слоях деформируемого тела и на поверхности инструмента ограничено пределом текучести при сдвиге отсюда .
Отсюда видно, что максимальное удельное усилие трения определяется не состоянием контактируемых поверхностей, а механическими свойствами обрабатываемого металла. Скольжение с предельным трением происходит как на поверхности касания, так и в поверхностном деформируемом слое, толщина которого определяется состоянием контактирующих поверхностей.
Кроме коэффициента трения в ОМД применяют понятие угол трения . При движении контактируемых тел, Рисунок 15, суммарная реакция нормального усиления и силы трения смещается на угол от вертикали (нормали).
Рисунок 15- Схема определенного угла трения.
Тогда и при малых углах
Природу трения можно объяснить как результат взаимного зацепления неровностей инструмента и деформируемого тела. При контактировании эти неровности сминаются, истираются, образуются новые поверхности. Эти поверхности сближаются, образуются условия молекулярного взаимодействия соприкасающихся металлов.
Параметрами, определяющими коэффициент трения являются: состояние поверхностей контактируемых тел, их количественный состав, температура и скорость деформации, удельные усилия, смазка.
При увеличении шероховатостей инструмента коэффициент трения увеличивается. Шероховатость при ОМД не остается постоянной, поэтому изменяется и коэффициент трения.
Состояние поверхности деформируемого тела, определяется видом предварительной обработки (горячая или холодная деформация, наличие окалины, травление) существенно влияет на коэффициент трения. При тщательной очистке поверхности коэффициент трения падает и в условиях больших давлений возможно даже сваривание поверхностей.
Химическое сродство деформируемого тела и металла инструмента определяет величину коэффициента трения. При этом, чем мягче металл, тем выше коэффициент трения. Смазка контактных поверхностей уменьшает коэффициент трения и влечет за собой заметное падение энергосиловых параметров ОМД, снижает износ инструментов. Смазка заполняет шероховатости поверхностей, образует адсорбционную пленку, снижает прилипание.
По мере роста температуры металла коэффициент трения увеличивается. Это связано с облегчением заполнения шероховатостей рабочего инструмента деформируемым металлом. Однако для сталей при температуре выше происходит снижение коэффициента трения.
Рисунок 16 - Зависимость коэффициента трения от .
Это объясняется увеличением податливости металла в приконтактной зоне, облегчением смятия и отрыва металла от выступов.
Скорость относительного смещения инструмента и деформируемого тела оказывает существенное влияние на коэффициент трения. Чем выше скорость, тем меньше коэффициент трения.
Захват металла валками
Непрерывное втягивание металла валками, его деформация обеспечивается наличием контактного трения между полосой и валками. Геометрическую область деформирования при прокатке (Рисунок 17) принято называть очагом деформации. Дугу называют дугой захвата, а отвечающий ей угол − углом захвата.
Тело, деформируемое прокаткой, независимо от размеров его поперечного сечения и формы называется полосой.
Рисунок 17 - Схема прокатки в цилиндрических валках.
Весь процесс прокатки полосы, с момента захвата и до момента выхода полосы из валков, из-за различных условий деформирования делится на 3 периода:
1. Захват полосы валками – заполнение очага деформации до момента образования некоторого переднего конца за пределами линии центров валков.
2. Установившейся период – характеризующийся постоянством условий деформации при наличии заднего конца.
3. Заключительный – период ухода металла из очага деформации.
В дальнейшем считаем, что оба валка цилиндрические, одного диаметра, вращаются с одной скоростью, имеют одинаковые условия трения, упругая деформация их не учитывается.
Увеличение обжатия зависит от увеличения угла захвата. Из рисунка 12 видно, что:
. (27)
Тогда , если ,то D.
Кроме угла захвата на увеличение обжатия оказывает влияние диаметр валков: чем больше диаметр - тем больше обжатие при равных условиях трения.
Практикой установлено максимальные углы захвата и коэффициенты трения при прокатке различных металлов (таблица 1):
При прокатке стали можно пользоваться формулами по определению коэффициента трения:
− для стальных валков,
− для чугунных,
где t – температура проката.
Таблица 1 - Коэффициенты трения и углы захвата
Коэффициент трения | угол захвата | |
Горячая прокатка | ||
блюмов | 0.45 ¸ 0.62 | 24 ¸ 32 |
стальных профилей | 0.36 ¸ 0.47 | 20 ¸ 25 |
стальных листов | 0.27 ¸ 0.36 | 15 ¸ 20 |
Холодная прокатка | ||
со смазкой | 0.04 ¸ 0.09 | 3 ¸ 5 |
без смазки | 0.09 ¸ 0.18 | 5 ¸ 10 |
При соприкосновении полосы с вращающимися валками полоса оказывает радиальное давление на валки. В результате образуется сила трения T, которая стремится подать полосу в область деформирования, Рисунок 18. Чтобы определить захватывающую способность валков, необходимо сопоставить действие сил Tи R. Захват полосы возможен, если проекция силы на направление движения больше, чем проекция силы R:
.
Разделим левую и правую часть неравенства на ,
Тогда .
Из условия Амонтона , тогда
Так как ,
где − угол трения.
Это означает, что для захвата металла валками необходимо, чтобы угол захвата был меньшем, чем угол трения, то есть .
Равенство углов и отвечает крайним условиям. При захват металла невозможен.
Рисунок 18 - Схема силового взаимодействия полосы и валков в первый период.
По мере заполнения очага деформации, появления переднего конца полосы и перехода к установившемуся процессу, положение равнодействующей смещается ближе к плоскости выхода (Рисунок 19). Если принять, что контактные напряжения по дуге захвата равномерные, то реакция полного усиления металла на валки будет делить область деформирования пополам:
. (28)
Так же, как и в момент захвата, прокатка может выполняться, если:
, , то
, (29)
Рисунок 19 - Схема силового взаимодействия полосы и валков в установившийся период
По данным ряда исследований установлено, что коэффициент контактного трения при установившемся процессе на меньше, чем при захвате:
. (30)
Однако, сравнивая предельные условия при установившемся процессе и в момент захвата, можно отметить, что установившейся процесс имеет большие резервы по трению:
, (31)
где .
Поэтому определяющим для прокатки, по условиям трения, является условия захвата, т.е. .
Для повышения обжатий с целью использования резервных сил трения, присущих установившемуся процессу прокатки, можно использовать принудительную задачу заготовки в валки (прикладывая какую - то силу к заднему концу полосы) или использовать специальную технологию поджатия заготовки прокатным валком.