IТехнология сборки и сварки трапа

СОДЕРЖАНИЕ

Введение
I Технология изготовления трапа
1 Описание конструкции, выбор способа сварки
2 Выбор сварочного оборудования его устройства и технические характеристики
3 Выбор и описание сварочного материала, инструментов, приспособлений
4 Подготовка металла под сварку и сборка конструкции
5 Выбор режимов сварки, техника выполнения сварных швов
6 Контроль качества сварных соединений
7 Охрана труда и техника безопасности при изготовлении изделия
IIГазовая наплавка валиков на пластину из низкоуглеродистой стали
Список использованных источников

ВВЕДЕНИЕ

Сварка это процесс получения неразъемного соединения посредством установления межатомных связей между свариваемыми частями при их местном или общем нагреве, или пластическом деформировании, или совместном действии того и другого. В настоящее время создано очень много видов сварки (их число приближается к 100). Все известные виды сварки принято классифицировать по основным физическим, техническим и технологическим признакам. По физическим признакам, в зависимости от формы используемой энергии, предусматриваются три класса сварки:

· термическая сварка металлов

· термомеханическая сварка металлов

· механическая сварка металлов

Термический класс включает все виды сварки с использованием тепловой энергии (дуговая сварка, газовая сварка, плазменная сварка и т. д.).
Термомеханический класс объединяет все виды сварки, при которых используются давление и тепловая энергия (контактная сварка, диффузионная сварка)
Механический класс включает виды сварки, осуществляемые механической энергией (холодная сварка, сварка трением, ультразвуковая сварка, сварка взрывом).

Виды сварки классифицируются по следующим техническим признакам:

· по способу защиты металла в зоне сварки (в воздухе, в вакууме, под флюсом, в пене, в защитном газе, с комбинированной защитой);

· по непрерывности процесса (непрерывная, прерывистая);

· по степени механизации (ручная, механизированная, автоматизированная, автоматическая);

· по типу защитного газа (в активных газах, в инертных газах);

· по характеру защиты металла в зоне сварки (со струйной защитой, в контролируемой атмосфере).

Технологические признаки установлены для каждого вида сварки отдельно. Познакомимся с наиболее применяемыми видами сварки и соответствующим оборудованием.

Дуговая сварка металла

Дуговая сварка металла это сварка плавлением, при которой нагрев свариваемых кромок осуществляется теплотой электрической дуги. Наибольшее применение получили четыре вида дуговой сварки.

Ручная дуговая сварка металла

Может производиться двумя способами:

· неплавящимся электродом

· плавящимся электродом

Ручная дуговая сварка металла неплавящимся электродом

Ручная дуговая сварка металла неплавящимся электродом предусматривает следующее: свариваемые кромки изделия приводят в соприкосновение. Между неплавящимся (угольным, графитовым) электродом и изделием возбуждают дугу. Кромки изделия и вводимый в зону дуги присадочный материал нагреваются до плавления, образуется ванночка расплавленного металла. После затвердевания металл в ванночке образует сварной шов. Этот способ используется при сварке цветных металлов и их сплавов, а также при наплавке твердых сплавов.

Ручная дуговая сварка металла плавящимся электродом

При сварке металла плавящимся электродом используется электрод, этот способ является основным при ручной сварке. Электрическая дуга возбуждается аналогично первому способу, расплавляет электрод и кромки изделия. Получается общая ванна расплавленного металла, которая, охлаждаясь, образует шов.

Автоматическая и полуавтоматическая сварка металла под флюсом

Автоматическая и полуавтоматическая сварка металла под флюсом выполняется путем механизации основных движений, выполняемых сварщиком при ручной сварке металла - подачи электрода в зону дуги и перемещения его вдоль свариваемых кромок изделия. При полуавтоматической сварке механизирована подача электрода в зону дуги, а перемещение электрода вдоль свариваемых кромок производит сварщик вручную. При автоматической сварке металла механизированы все операции, необходимые для этого процесса. Жидкий металл в ванночке защищают от воздействия кислорода и азота воздуха расплавленным шлаком, образованным от плавления флюса, подаваемого в зону дуги. Такая сварка металла обеспечивает высокую производительность и хорошее качество сварного шва.

Дуговая сварка металла в защитном газе

Дуговая сварка металла в защитном газе выполняется неплавящимся (вольфрамовым) или плавящимся электродом. В первом случае сварной шов формируется за счет металла расплавленных кромок изделия. При необходимости в зону дуги подается присадочный материал. Во втором случае подаваемая в зону дуги электродная проволока расплавляется и участвует в образовании шва. Защиту расплавленного шва от окисления и азотирования осуществляют струей защитного газа, оттесняющего атмосферный воздух из зоны дуги.

Электрошлаковая сварка металла

Электрошлаковая сварка металла осуществляется путем плавления металла свариваемых кромок изделия, расположенных вертикально или под углом 45о, и электрода теплотой, выделяемой током при прохождении через расплавленный шлак. Кроме того, шлак защищает расплавленный металл от воздействия воздуха. Снизу к свариваемым изделиям приваривается вручную поддон. По обе стороны зазора между изделиями прижимаются формирующие шов медные ползуны с водяным охлаждением. Затем на поддон насыпается специальный флюс, над которым располагаются одна или две электродные проволоки. Дуга возбуждается под флюсом между электродами и поддоном. В зону горения дуги электродная проволока подаётся специальным механизмом. За счёт тепла дуги электродная проволока и флюс расплавляются, в результате образуется ванна расплавленного металла и над ней шлаковая ванна. В дальнейшем необходимое тепло образуется за счёт прохождения тока через расплавленный шлак, обладающий высоким сопротивлением (согласно закону Ленца-Джоуля). По мере накопления в ванне жидкого металла и шлака медные ползуны вместе с механизмом подачи электродной проволоки и флюса перемещаются автоматически снизу вверх со скоростью подъёма жидкого металла.

Особые виды сварки металла

В промышленности и строительстве все более широкое распространение получают тугоплавкие и химически активные металлы и сплавы. Они применяются в особо ответственных узлах. Для получения высококачественных швов в этих случаях используют источники с высокой концентрацией теплоты и осуществляют сварку в среде с очень низким содержанием кислорода, азота и водорода. Наиболее часто применяются электронно-лучевая и плазменная сварки.
Электронно-лучевая сварка металла осуществляется путем использования кинетической энергии концентрированного потока электронов, движущихся с большой скоростью в вакууме. Устройство для электронно-лучевой сварки похоже на устройство кинескопа (катод, ускоряющий электрод, магнитная линза, напряжение 30-100 кВ).
Плазменная сварка металла основана на использовании струи ионизированного газа - плазмы, содержащего электрически заряженные частицы и способного проводить ток. Энергия дуговой плазменной струи зависит от сварочного тока, напряжения, расхода газа и др. факторов. Источники питания дуги должны иметь рабочее напряжение более 120 В. Плазмообразующий газ служит также защитой расплавленного металла от окружающего воздуха.

Введение

Сваркой называют технологический процесс получения механически неразъемных соединений, характеризующихся непрерывностью структур – непрерывной структурной связью.

Это технологический процесс, с помощью которого изготавливаются все основные конструкции гидротехнических сооружений, паровых и атомных электростанций, автодорожные, городские и железнодорожные мосты, вагоны, наводные и подводные корабли, строительные металлоконструкции, всевозможные подъемные краны и многие другие изделия. Если некоторое время тому назад конструкции изготавливались в основном из относительно просто сваривающихся материалов, то в настоящее время, наряду с традиционными, для сварных конструкций применяются материалы с весьма различными физическими характеристиками: коррозионно-стойкие и жаропрочные стали и сплавы, никелевые и медные сплавы с особыми свойствами, лёгкие сплавы на алюминиевой о магниевой основах, титановые сплавы, ниобий, тантал и другие металлы и сплавы.

Многообразие свариваемых конструкций и свойств материалов, используемых для изготовления, заставляют применять различные способы сварки, разнообразные сварочные источники теплоты. Для сварочного нагрева и формирования сварного соединения используются: энергия, преобразованная в тепловую посредством дугового разряда, электронного луча, квантовых генераторов; джоулево тепло, выделяемое протекающим током по твёрдому или жидкому проводнику; химическая энергия горения, механическая энергия, энергия ультразвука и других источников.

Все эти способы требуют разработки, производства и правильной эксплуатации разнообразного оборудования, в ряде случаев с применением аппаратуры, точно дозирующей энергию, со сложными схемами, иногда с использованием технической электроники и кибернетики. Разнообразие способов сварки, отраслей промышленности, в которых её используют, свариваемых материалов, видов конструкций и огромные объёмы применения позволяют охарактеризовать технологический процесс сварки, как один из важнейших в металлообработке.

1.Электродуговая сварка

1.1.Общие сведения

В 1802 г. русский физик В. В. Петров первым в мире открыл явление дугового разряда и возможность использовать его для расплавления металла. В 1882 г. русский инженер Н. Н. Бенардос изобрел способ дуговой сварки . с применением угольного электрода (рис. 1). Один провод электросварочной цепи присоединяется к свариваемому металлу 5, другой — к держателю 4 с угольным неплавящимся электродом 3. Чтобы образовать сварной шов или наплавленный слой, в дугу 1 вводят присадочный металлический пруток 2. Для сварки угольным электродом требуется только постоянный ток и применение присадочного прутка. Это усложняет процесс, и особенно широкого распространения такой вид сварки не получил. Его применяют при сварке чугуна, цветных металлов, при наплавке твердыми сплавами и электродуговой резке.

В 1888 г. русский инженер Н. Г. Славянов изобрел дуговую сварку плавящимся металлическим электродом. Процесс значительно упростился, его начали применять более широко. Для получения электросварочной дуги используют постоянный и переменный ток. Этим способом можно сваривать и наплавлять углеродистые и легированные стали всех марок толщиной от 1 м и выше, чугун и цветные металлы, а также наплавлять твердые сплавы. Горение любой сварочной дуги сопровождается выделением большого количества теплоты. Температура дуги на оси газового столба достигает 6000...7500°С, на участках поверхности угольных электродов (пятнах электродов) — 3000... 4000°С, стальных — 22ОО...25ОО°С. При сварке на постоянном токе угольными электродами температура дуги на аноде достигает 4000°С и на катоде 3200°С, при использовании стальных электродов — на аноде 2600°С, на катоде 2400°С. Поэтому при. сварке тонкого или легкоплавкого металла, а также чувствительных к перегреву высокоуглеродистых, нержавеющих и легированных сталей электрическую дугу питают током обратной полярности, то есть минус источника тока подключают к изделию.

Температура дуги зависит от силы тока, приходящейся на единицу площади поперечного сечения электрода, — плотности тока. Чем она больше, тем выше температура дуги. При ручной дуговой сварке плавящимся электродом плотность тока от 10 до 20 А/мм2 и напряжение 18...20 В.

В ремонтной практике для сварочных работ используют переменный к постоянный ток. Сварочная дуга на переменном токе малой плотности горит неустойчиво. Чтобы повысить стабильность дуги, увеличивают плотность тока. По этой причине при сварке мелких деталей возрастает опасность их прожигания, однако из-за простоты источников питания сварку на переменном токе применяют достаточно широко. При сварке на постоянном токе дуга горит стабильно. Это позволяет использовать малые токи и сваривать тонкие детали, а кроме того, можно изменять полярность тока. Поэтому, несмотря на более сложное и дорогое оборудование источников питания, постоянный ток применяют в практике все шире.

Производительность сварки характеризуют количеством расплавленного электродного металла в единицу времени, которое определяют по формуле

IТехнология сборки и сварки трапа - student2.ru ,

где IТехнология сборки и сварки трапа - student2.ru — количество расплавленного металла электрода, г; Кн — коэффициент наплавки, г/(А- ч); I — сварочный ток, А.

Коэффициент наплавки зависит от присадочного материала, материала электродов и состава их покрытия, рода и полярности тока, а также от потерь при сварке. Для различных условий коэффициент наплавки находят опытным путем. При ручной сварке он колеблется в пределах от 6 до 18 г/ (А • ч) или составляет в среднем 8...12 г/(А • ч).

Под действием высокой температуры в зоне сварки молекулы кислорода и азота, попадающие из воздуха, частично распадаются на атомы. Кислород образует оксиды железа и способствует выгоранию ценных легирующих элементов (марганца, кремния и др.), тем самым резко ухудшая свойства наплавленного слоя. Азот образует нитриды, которые увеличивают твердость, снижают пластичность и способствуют образованию коробления и трещин. Водород, попадающий в зону сварки из влаги и ржавчины, способствует образованию пор и трещин. Чтобы уменьшить вредное воздействие этих элементов, место сварки зачищают, а зону сварки защищают нейтральными газами и шлаками.

Подготовка металла под сварку и сборка конструкции

Если металл , идущий на изготовление сварных конструкций загрязнен или деформирован, его нужно предварительно очистить и выправить. Очистка может производиться ручными и механическими проволочными щетками, пламенем специальной горелки, промывкой горячей водой или раствором щелочи, травлением в растворах различных кислот и другими способами.

Перед началом сварки необходимо произвести разделку кромок, обрезку, выставить нужные зазоры. Скос кромок производится в соответствии с типом сварного соединения. После подготовки металла можно начинать сборку изделий под сварку.

Металл выправляют либо вручную, либо на специальных станках. Например, листы выправляются пропусканием их через листоправильные вальцы. Углы правят на углоправильных станках. Правка швеллерного и двутаврового профиля производится с помощью правильно-гибочных прессов.При очень малых объемах производства и отсутствии правильного оборудования иногда приходится прибегать и к ручной правке металла на правильной плите.

После подготовки металл фиксируют в положении, предусмотренном проектом. В процессе сборки необходимо выдержать заданный зазор между свариваемыми элементами, установить их в требуемых плоскостях или под заданным углом и скрепить между собой так, чтобы при сварке взаимное расположение элементов не нарушалось и к месту сварки был свободный доступ. Таким образом, технология сборки под сварку должна гарантировать хорошее качество сварки изделия. Правильность сборки проверяется специальными шаблонами.

Собираемые элементы относительно друг друга фиксируются в основном с помощью коротких отрезков сварных швов, называемых прихватками. Прихватки рекомендуется накладывать со стороны, обратной наложению первого валика. Длина прихватки 20—120 мм и зависит от вида конструкции: более длинные прихватки делаются на больших массивных изделиях. При сборке кольцевых стыков трубопроводов длина прихваток должна быть не более 25 мм. На стыках трубопроводов диаметром до 200 мм делается три прихватки, для трубопроводов диаметром 200—300 мм — не менее четырех прихваток. Высота прихватки не должна превышать высоту первого валика сварного шва.

При сварке ответственных конструкций перед наложением основного шва прихватки должны удаляться по мере заварки шва. Конструкция в собранном виде удерживается подварочным швом или специальными приспособлениями.

При сборке тяжелых конструкций, у которых обычные прихватки в процессе сварки могут лопнуть (например, при сварке шарового резервуара на манипуляторе), вместо прихваток накладывается сплошной шов небольшого сечения.

СОДЕРЖАНИЕ

Введение
I Технология изготовления трапа
1 Описание конструкции, выбор способа сварки
2 Выбор сварочного оборудования его устройства и технические характеристики
3 Выбор и описание сварочного материала, инструментов, приспособлений
4 Подготовка металла под сварку и сборка конструкции
5 Выбор режимов сварки, техника выполнения сварных швов
6 Контроль качества сварных соединений
7 Охрана труда и техника безопасности при изготовлении изделия
IIГазовая наплавка валиков на пластину из низкоуглеродистой стали
Список использованных источников

ВВЕДЕНИЕ

Сварка это процесс получения неразъемного соединения посредством установления межатомных связей между свариваемыми частями при их местном или общем нагреве, или пластическом деформировании, или совместном действии того и другого. В настоящее время создано очень много видов сварки (их число приближается к 100). Все известные виды сварки принято классифицировать по основным физическим, техническим и технологическим признакам. По физическим признакам, в зависимости от формы используемой энергии, предусматриваются три класса сварки:

· термическая сварка металлов

· термомеханическая сварка металлов

· механическая сварка металлов

Термический класс включает все виды сварки с использованием тепловой энергии (дуговая сварка, газовая сварка, плазменная сварка и т. д.).
Термомеханический класс объединяет все виды сварки, при которых используются давление и тепловая энергия (контактная сварка, диффузионная сварка)
Механический класс включает виды сварки, осуществляемые механической энергией (холодная сварка, сварка трением, ультразвуковая сварка, сварка взрывом).

Виды сварки классифицируются по следующим техническим признакам:

· по способу защиты металла в зоне сварки (в воздухе, в вакууме, под флюсом, в пене, в защитном газе, с комбинированной защитой);

· по непрерывности процесса (непрерывная, прерывистая);

· по степени механизации (ручная, механизированная, автоматизированная, автоматическая);

· по типу защитного газа (в активных газах, в инертных газах);

· по характеру защиты металла в зоне сварки (со струйной защитой, в контролируемой атмосфере).

Технологические признаки установлены для каждого вида сварки отдельно. Познакомимся с наиболее применяемыми видами сварки и соответствующим оборудованием.

Дуговая сварка металла

Дуговая сварка металла это сварка плавлением, при которой нагрев свариваемых кромок осуществляется теплотой электрической дуги. Наибольшее применение получили четыре вида дуговой сварки.

Ручная дуговая сварка металла

Может производиться двумя способами:

· неплавящимся электродом

· плавящимся электродом

Ручная дуговая сварка металла неплавящимся электродом

Ручная дуговая сварка металла неплавящимся электродом предусматривает следующее: свариваемые кромки изделия приводят в соприкосновение. Между неплавящимся (угольным, графитовым) электродом и изделием возбуждают дугу. Кромки изделия и вводимый в зону дуги присадочный материал нагреваются до плавления, образуется ванночка расплавленного металла. После затвердевания металл в ванночке образует сварной шов. Этот способ используется при сварке цветных металлов и их сплавов, а также при наплавке твердых сплавов.

Ручная дуговая сварка металла плавящимся электродом

При сварке металла плавящимся электродом используется электрод, этот способ является основным при ручной сварке. Электрическая дуга возбуждается аналогично первому способу, расплавляет электрод и кромки изделия. Получается общая ванна расплавленного металла, которая, охлаждаясь, образует шов.

Автоматическая и полуавтоматическая сварка металла под флюсом

Автоматическая и полуавтоматическая сварка металла под флюсом выполняется путем механизации основных движений, выполняемых сварщиком при ручной сварке металла - подачи электрода в зону дуги и перемещения его вдоль свариваемых кромок изделия. При полуавтоматической сварке механизирована подача электрода в зону дуги, а перемещение электрода вдоль свариваемых кромок производит сварщик вручную. При автоматической сварке металла механизированы все операции, необходимые для этого процесса. Жидкий металл в ванночке защищают от воздействия кислорода и азота воздуха расплавленным шлаком, образованным от плавления флюса, подаваемого в зону дуги. Такая сварка металла обеспечивает высокую производительность и хорошее качество сварного шва.

Дуговая сварка металла в защитном газе

Дуговая сварка металла в защитном газе выполняется неплавящимся (вольфрамовым) или плавящимся электродом. В первом случае сварной шов формируется за счет металла расплавленных кромок изделия. При необходимости в зону дуги подается присадочный материал. Во втором случае подаваемая в зону дуги электродная проволока расплавляется и участвует в образовании шва. Защиту расплавленного шва от окисления и азотирования осуществляют струей защитного газа, оттесняющего атмосферный воздух из зоны дуги.

Электрошлаковая сварка металла

Электрошлаковая сварка металла осуществляется путем плавления металла свариваемых кромок изделия, расположенных вертикально или под углом 45о, и электрода теплотой, выделяемой током при прохождении через расплавленный шлак. Кроме того, шлак защищает расплавленный металл от воздействия воздуха. Снизу к свариваемым изделиям приваривается вручную поддон. По обе стороны зазора между изделиями прижимаются формирующие шов медные ползуны с водяным охлаждением. Затем на поддон насыпается специальный флюс, над которым располагаются одна или две электродные проволоки. Дуга возбуждается под флюсом между электродами и поддоном. В зону горения дуги электродная проволока подаётся специальным механизмом. За счёт тепла дуги электродная проволока и флюс расплавляются, в результате образуется ванна расплавленного металла и над ней шлаковая ванна. В дальнейшем необходимое тепло образуется за счёт прохождения тока через расплавленный шлак, обладающий высоким сопротивлением (согласно закону Ленца-Джоуля). По мере накопления в ванне жидкого металла и шлака медные ползуны вместе с механизмом подачи электродной проволоки и флюса перемещаются автоматически снизу вверх со скоростью подъёма жидкого металла.

Особые виды сварки металла

В промышленности и строительстве все более широкое распространение получают тугоплавкие и химически активные металлы и сплавы. Они применяются в особо ответственных узлах. Для получения высококачественных швов в этих случаях используют источники с высокой концентрацией теплоты и осуществляют сварку в среде с очень низким содержанием кислорода, азота и водорода. Наиболее часто применяются электронно-лучевая и плазменная сварки.
Электронно-лучевая сварка металла осуществляется путем использования кинетической энергии концентрированного потока электронов, движущихся с большой скоростью в вакууме. Устройство для электронно-лучевой сварки похоже на устройство кинескопа (катод, ускоряющий электрод, магнитная линза, напряжение 30-100 кВ).
Плазменная сварка металла основана на использовании струи ионизированного газа - плазмы, содержащего электрически заряженные частицы и способного проводить ток. Энергия дуговой плазменной струи зависит от сварочного тока, напряжения, расхода газа и др. факторов. Источники питания дуги должны иметь рабочее напряжение более 120 В. Плазмообразующий газ служит также защитой расплавленного металла от окружающего воздуха.

Введение

Сваркой называют технологический процесс получения механически неразъемных соединений, характеризующихся непрерывностью структур – непрерывной структурной связью.

Это технологический процесс, с помощью которого изготавливаются все основные конструкции гидротехнических сооружений, паровых и атомных электростанций, автодорожные, городские и железнодорожные мосты, вагоны, наводные и подводные корабли, строительные металлоконструкции, всевозможные подъемные краны и многие другие изделия. Если некоторое время тому назад конструкции изготавливались в основном из относительно просто сваривающихся материалов, то в настоящее время, наряду с традиционными, для сварных конструкций применяются материалы с весьма различными физическими характеристиками: коррозионно-стойкие и жаропрочные стали и сплавы, никелевые и медные сплавы с особыми свойствами, лёгкие сплавы на алюминиевой о магниевой основах, титановые сплавы, ниобий, тантал и другие металлы и сплавы.

Многообразие свариваемых конструкций и свойств материалов, используемых для изготовления, заставляют применять различные способы сварки, разнообразные сварочные источники теплоты. Для сварочного нагрева и формирования сварного соединения используются: энергия, преобразованная в тепловую посредством дугового разряда, электронного луча, квантовых генераторов; джоулево тепло, выделяемое протекающим током по твёрдому или жидкому проводнику; химическая энергия горения, механическая энергия, энергия ультразвука и других источников.

Все эти способы требуют разработки, производства и правильной эксплуатации разнообразного оборудования, в ряде случаев с применением аппаратуры, точно дозирующей энергию, со сложными схемами, иногда с использованием технической электроники и кибернетики. Разнообразие способов сварки, отраслей промышленности, в которых её используют, свариваемых материалов, видов конструкций и огромные объёмы применения позволяют охарактеризовать технологический процесс сварки, как один из важнейших в металлообработке.

1.Электродуговая сварка

1.1.Общие сведения

В 1802 г. русский физик В. В. Петров первым в мире открыл явление дугового разряда и возможность использовать его для расплавления металла. В 1882 г. русский инженер Н. Н. Бенардос изобрел способ дуговой сварки . с применением угольного электрода (рис. 1). Один провод электросварочной цепи присоединяется к свариваемому металлу 5, другой — к держателю 4 с угольным неплавящимся электродом 3. Чтобы образовать сварной шов или наплавленный слой, в дугу 1 вводят присадочный металлический пруток 2. Для сварки угольным электродом требуется только постоянный ток и применение присадочного прутка. Это усложняет процесс, и особенно широкого распространения такой вид сварки не получил. Его применяют при сварке чугуна, цветных металлов, при наплавке твердыми сплавами и электродуговой резке.

В 1888 г. русский инженер Н. Г. Славянов изобрел дуговую сварку плавящимся металлическим электродом. Процесс значительно упростился, его начали применять более широко. Для получения электросварочной дуги используют постоянный и переменный ток. Этим способом можно сваривать и наплавлять углеродистые и легированные стали всех марок толщиной от 1 м и выше, чугун и цветные металлы, а также наплавлять твердые сплавы. Горение любой сварочной дуги сопровождается выделением большого количества теплоты. Температура дуги на оси газового столба достигает 6000...7500°С, на участках поверхности угольных электродов (пятнах электродов) — 3000... 4000°С, стальных — 22ОО...25ОО°С. При сварке на постоянном токе угольными электродами температура дуги на аноде достигает 4000°С и на катоде 3200°С, при использовании стальных электродов — на аноде 2600°С, на катоде 2400°С. Поэтому при. сварке тонкого или легкоплавкого металла, а также чувствительных к перегреву высокоуглеродистых, нержавеющих и легированных сталей электрическую дугу питают током обратной полярности, то есть минус источника тока подключают к изделию.

Температура дуги зависит от силы тока, приходящейся на единицу площади поперечного сечения электрода, — плотности тока. Чем она больше, тем выше температура дуги. При ручной дуговой сварке плавящимся электродом плотность тока от 10 до 20 А/мм2 и напряжение 18...20 В.

В ремонтной практике для сварочных работ используют переменный к постоянный ток. Сварочная дуга на переменном токе малой плотности горит неустойчиво. Чтобы повысить стабильность дуги, увеличивают плотность тока. По этой причине при сварке мелких деталей возрастает опасность их прожигания, однако из-за простоты источников питания сварку на переменном токе применяют достаточно широко. При сварке на постоянном токе дуга горит стабильно. Это позволяет использовать малые токи и сваривать тонкие детали, а кроме того, можно изменять полярность тока. Поэтому, несмотря на более сложное и дорогое оборудование источников питания, постоянный ток применяют в практике все шире.

Производительность сварки характеризуют количеством расплавленного электродного металла в единицу времени, которое определяют по формуле

IТехнология сборки и сварки трапа - student2.ru ,

где IТехнология сборки и сварки трапа - student2.ru — количество расплавленного металла электрода, г; Кн — коэффициент наплавки, г/(А- ч); I — сварочный ток, А.

Коэффициент наплавки зависит от присадочного материала, материала электродов и состава их покрытия, рода и полярности тока, а также от потерь при сварке. Для различных условий коэффициент наплавки находят опытным путем. При ручной сварке он колеблется в пределах от 6 до 18 г/ (А • ч) или составляет в среднем 8...12 г/(А • ч).

Под действием высокой температуры в зоне сварки молекулы кислорода и азота, попадающие из воздуха, частично распадаются на атомы. Кислород образует оксиды железа и способствует выгоранию ценных легирующих элементов (марганца, кремния и др.), тем самым резко ухудшая свойства наплавленного слоя. Азот образует нитриды, которые увеличивают твердость, снижают пластичность и способствуют образованию коробления и трещин. Водород, попадающий в зону сварки из влаги и ржавчины, способствует образованию пор и трещин. Чтобы уменьшить вредное воздействие этих элементов, место сварки зачищают, а зону сварки защищают нейтральными газами и шлаками.

IТехнология сборки и сварки трапа

1 Описание конструкции, выбор способа сварки IТехнология сборки и сварки трапа - student2.ru IТехнология сборки и сварки трапа - student2.ru IТехнология сборки и сварки трапа - student2.ru Для изготовления конструкции была выбрана ручная дуговая сварки покрытыми электродами.

Ручная дуговая сварка – сварка, источником энергии которой является электрическая дуга.

Для образования и поддержания электрической дуги к электроду и свариваемому изделию от источника питания подводится переменный или постоянный сварочный ток.

Преимущества ручной дуговой сварки:

· возможность сварки в любых пространственных положениях;

· возможность сварки в местах с ограниченным доступом;

· сравнительно быстрый переход от одного свариваемого материала к другому;

· возможность сварки самых различных сталей благодаря широкому выбору выпускаемых марок электродов;

· простота и транспортабельность сварочного оборудования.

Недостатки ручной дуговой сварки:

· низкие КПД и производительность по сравнению с другими технологиями сварки;

· качество соединений во многом зависит от квалификации сварщика;

· вредные условия процесса сварки.

Наши рекомендации