Выбор и обоснование методов сборки и сварки

2.3.1 Сборку сварных конструкций вединичном и мелкосерийном производстве можно производить по разметке с применением простейших универсальных приспособлений (струбцин, скоб с клиньями), с последующей прихваткой с использованием того же способа сварки, что и при выполнении сварных швов.

В условиях серийного производства сборка под сварку производится на универсальных плитах с пазами, снабжёнными упорами, фиксаторами с различными зажимами. На универсальных плитах сборку следует вести только в тех случаях, когда в проекте заданы однотипные, но различные по габаритам сварные конструкции. При помощи шаблонов можно собрать простые сварные конструкции.

В условиях серийного и массового производства сборку под сварку следует производить на специальных сборочных стендах или в специальных сборочно-сварочных приспособлениях, которые обеспечивают требуемое взаимное расположение входящих в сварную конструкцию деталей и точность сборки изготавливаемой сварной конструкции в соответствии с требованиями чертежа и технических условий на сборку.

Кроме того, сборочные приспособления обеспечивают сокращение длительности сборки и повышение производительности труда, облегчение условий труда, повышение точности работ и улучшение качества готовой сварной конструкции.

Собираемые под сварку детали крепятся в приспособлениях и на стендах с помощью различного рода винтовых, ручных, пневматических и других зажимов.

2.3.2 Выбор того или иного способа сварки зависят от следующих факторов:

- толщины свариваемого материала;

- протяжённости сварных швов;

- требований к качеству выпускаемой продукции;

- химического состава металла;

- предусматриваемой производительности;

- себестоимости 1 кг наплавленного металла;

Среди способов электродуговой сварки наиболее употребляемыми являются.

- ручная дуговая сварка;

- механическая сварка в защитных газах;

- автоматизированная сварка в защитных газах и под флюсом.

Ручная дуговая сварка (РДС) из-за низкой производительности и высокой трудоёмкости не приемлема в серийном и массовом производствах. Она используется в основном в единичном производстве.

Наиболее целесообразно использование механизированных способов сварки.

Одним из таких способов является полуавтоматическая сварка в углекислом газе, которая в настоящее время занимает значительное место в народном хозяйстве благодаря своим технологическим и экономическим преимуществам.

Технологическими преимуществами являются относительная простота процесса сварки, возможность полуавтоматической и автоматической сварки швов, находящихся в различных пространственных положениях, что позволяет механизировать сварку в различных пространственных положениях, в том числе сварку неповоротных стыков труб.

Небольшой объём шлаков, участвующих в процессе сварки в СО2 позволяет в ряде случаев получить швы высокого качества

Экономический эффект от применения сварки в углекислом газе существенно зависит от толщины свариваемого металла, типа соединения, расположения шва в пространстве, диаметра электродной проволоки и режимов сварки.

Себестоимость 1 кг наплавленного металла при сварке вуглекислом газе всегда ниже, чем при газовой и ручной дуговой сварке.

При сварке в углекислом газе проволокой диаметром 0,8-1,4 мм изделий из стали, толщиной до 40 мм во всех положениях выработка на средних режимах на автоматах в 2-5раз выше, а на полуавтоматах - в 1,8-3 раза выше, чем при ручной дуговой сварке.

При сварке в углекислом газе проволокой диаметром 0,8-1,4 мм вертикальных и потолочных швов из стали толщиной 8 мм и более и в нижнем положении толщиной более 10 мм проволоками диаметром 1,4-2,5 мм производительность в 1,5-2,5 раза выше, чем при ручной электродуговой сварке.

Производительность сварки в углекислом газе проволоками диаметром 1,4-2,5 мм из стали толщиной 5-10 мм в нижнем положении зависит от характера изделия, типа и размера соединения, качества сборки и др. При этом производительность только в 1,1-1,8 раза выше, чем вручную.

Перечисленные технологические и экономические преимущества сварки в углекислом газе позволяют широко использовать этот метод всерийном и массовом производствах.

В настоящее время на машиностроительных предприятиях России всё шире ведутся работы по внедрению в производство сварки в аргоне в смеси с углекислым газом. При сварке в СО2 проволоками любого диаметра выявляется два вида переноса расплавленного металла, характерные для оптимальных режимов: с периодическими замыканиями дугового промежутка и капельный перенос без коротких замыканий. При сварке в смеси Аr+CО2 область режимов сварки с короткими замыканиями дугового промежутка отсутствует. Изменение характера переноса при замене защитной среды можно рассматривать, как улучшение технологического процесса тем более, что оно сопровождается улучшением качественных и количественных характеристик процесса сварки: разбрызгивания и набрызгивания металла на сваривание детали и сопло.

При сварке в углекислом газе на оптимальных режимах на детали набрызгивается примерно 1 г/Ач брызг. Брызги прихватываются к поверхности свариваемого металла и с трудом удаляются металлической щёткой. 25-30% крупных капель привариваются к металлу, и для их удаления необходима работа с зубилом или другими средствами зачистки шва. Существенное уменьшение набрызгивания на детали наблюдается при сварке в смеси Ar+CO2 как минимум в 3 раза.

При сварке в СО2 существует область режимов, при которых наблюдается повышение забрызгивания сопла. Для проволоки диаметром 1,2 мм это область составляет 240-270 А, а для диаметра проволоки 1,6 мм – 290-310 А. При сварке всмеси аргона и углекислого газа область режимов большого разбрызгивания практически отсутствует. При забрызгивании сопла ухудшается состояние газовой защиты, а периодическая очистка снижает производительность. Форма провара при сварке СО2 в округлая и сохраняется в смеси Ar+CO2 при малых токах. При больших токах в нижней части провара появляется выступ, увеличивающий глубину проплавления, что увеличивает площадь разрушения по зоне сплавления. При равной глубине проплавления площадь провара основного металла в смеси Ar+CO2 на 8-25% меньше, чем при сварке в СО2, что приводит к уменьшению деформации. Наряду со сваркой в смеси аргона с углекислым газом наиболее широкое применение получила сварка в смеси углекислого газа с кислородом. Наличие кислорода в смеси пределах 20-30% уменьшает силы поверхностного натяжения, что способствует более мелкокапельному переносу и более «стойкому» разрыву перемычки между каплей и электродом, что снижает разбрызгивание. Кроме того окисленная капля хуже приваривается к металлу. Окисленные реакции увеличивают количество тепла, выделяемого в зоне дуги, что повышает производительность сварки. Наибольше преимущества сварка в смеси CO22 имеет при повышенном вылете электрода и применением проволок легированных цирконием, например Св08Г2СЦ.

Полуавтоматическую сварку в смеси CO22 производят проволоками диаметром 1,2-1,6 мм проволоками марок Св08Г2С и Св08Г2СЦ с обычным вылетом электрода во всех пространственных положениях.

Выбор сварочных материалов

Общие принципы выбора сварочных материалов характеризуются следующими основными условиями:

- обеспечением требуемой эксплуатационной прочности сварного соединения, т.е. определяемого уровня механических свойств металла шва в сочетании с основным металлом;

- обеспечением необходимой сплошности металла шва (без пор и шлаковых включений или с минимальными размерами и количеством указанных дефектов на единицу длины шва);

- отсутствием горячих трещин, т.е. получением металла шва с достаточной технологической прочностью;

-получением комплекса специальных свойств металла, шва (жаропрочности, жаростойкости, коррозионной стойкости).

Выбор сварочных материалов производится в соответствии с принятым способом сварки.

Выбор и обоснование конкретных типов и марок сварочных материалов следует произвести на основании литературных источников с учётом требований.

В картах технологического процесса для каждой технологической операции (сборка на прихватках, сварка), необходимо указать виды, марки, стандарт на виды и марки, сварочных материалов.

При ручной дуговой сварке конструкционных углеродистых и легированных сталей выбор электродов производится по ГОСТ 9467-75, который предусматривает два класса электродов. Первый класс - электроды для сварки углеродистых и легированных сталей, требования к которым установлены по механическим свойствам наплавленного металла и содержанию в нём серы и фосфора. Второй класс регламентирует требования к электродам для сварки легированных теплоустойчивых сталей и которые классифицируются по химическим свойствам наплавленного металла шва.

Выбор электродов для ручной дуговой сварки сталей и наплавки производится по ГОСТ 9466-75 и электродов для ручной дуговой сварки конструкционных и теплоустойчивых сталей по ГОСТ 9467-75.

ГОСТ 10052-75 устанавливает требования к электродам для сварки высоколегированных сталей с особыми, свойствами. Выбор электродов для сварки этих сталей производится по этому ГОСТу.

Выбор стальной проволоки для механизированных способов сварки производится по ГОСТ 2246-70, который предусматривает выпуск стальной сварочной проволоки для сварки диаметром от 0,3 до 12 мм.

Сварочная проволока для сварки алюминия и его сплавов поставляется по ГОСТ 7881-75.

Выбор флюсов для сварки производится по ГОСТ 9078-81, который предусматривает две группы флюсов:

- для сварки углеродистых низколегированных и среднелегированных сталей (АН-348А, АН-348АМ, ОСЦ-45, АН-60, АН-22, ФЦ-9, АН-64);

- для сварки высоколегированных, сталей (АН-26, АН-22, АН-30, АНФ-14, АНФ-16, АНФ-17, ФЦК-С, К-8).

В качестве защитных газов при сварке применяются инертные газы (аргон, гелий) и активные газы (углекислый газ, водород).

Аргон, предназначенный для сварки, регламентируется ГОСТ 10157-79 и в зависимости от процентного содержания аргона и назначения делится на аргон высшего, первого и второго сорта.

Гелий поставляется по ГОСТ 20461-75, который предусматривает два сорта газообразного гелия: гелий высокой чистоты (99,98% Не) и гелий технический (99,8% Не).

Углекислый газ, предназначенный для свари, соответствует ГОСТ 8050-85, который в зависимости, от содержания СО2 предусматривает двасорта сварочной углекислоты: первый сорт - с содержанием CО2 не менее 99,5%, второй сорт - с содержанием СО2 не менее 99%.

После обоснования выбора сварочных материалов для принятых в проекте способов сварки необходимо привести в форме таблиц химический состав этих материалов, механические свойства и химический состав наплавленного металла.

Наши рекомендации