Лекция 1. Элементы физики нефтегазового пласта

ВВЕДЕНИЕ. ЗАДАЧИ ПРЕДМЕТА

Изучаемые вопросы:

1. Введение. Задачи предмета.

2. Понятие о комплексе работ по заканчиваю скважин.

3. Роль завинчивания скважин в цикле строительства скважины.

4. Роль отечественных и зарубежных исследований в совершенствовании процесса цементирования.

Основной целью строительства разведочных и эксплуатационных скважин является выявление нефтегазонасыщенных пластов и, обеспечивание притока пластовой жидкости и транспортировка последнего на устье скважины. Весь цикл строительства скважин можно условно подразделить на проводку (бурение) и заканчивание. Под заканчиванием скважины понимают комплекс проводимых работ по вскрытию продуктивных горизонтов, их опробованию и испытанию а также разобщению нефтенасыщенных пород от выше и нижележащих. Объем курса "Заканчивание скважин" составляет 70 час. лекционного материала, - 28 часов лабораторных и 14 часов практических занятий. Лекционный курс разбит на два семестра. В осеннем семестре (7) - 28 часов, в весеннем (8) - 42 часа. В обоих семестрах предусмотрена сдача экзаменов. В 9 семестре по этому курсу выполняется курсовой проект.

Заканчивание скважин можно разделить на следующие операции:

- вскрытие продуктивных пластов;

- крепление скважины и разобщение пластов;

- освоение скважины;

- опробывание и испытание скважины;

- ремонто-изоляционные работы;

- ликвидация и консервация скважины.

Под вскрытием продуктивных пластов понимают комплекс работ проводимых в скважине при разбуривании перспективных в отношении нефтегазосодержания горизонтов. Основная задача, которая решается при вскрытии продуктивных пластов - это максимальное сохранение коллекторских свойств пласта. При решении данной задачи необходимы знания физики пласта, химии промывочных и тампонажных растворов, знания механики горных пород и ряда других предметов. Перед вскрытием продуктивных горизонтов инженер-технолог, как правило, решает следующие вопросы - обосновывает выбор конструкции скважины, метода вскрытия, выявляет наиболее оптимальную рецептуру промывочной жидкости и т. д.

Крепление скважин это наиболее ответственная операция как по технике своего осуществления, так и по значимости. От успешности ее выполнения зависит конечная цель бурения. Она оказывает решающее влияние на долговечность работы скважины, на успешность заканчивания и освоения, на охрану недр и т. д. крепление скважины тесным образом связана с разобщением продуктивных пластов. Основными задачами крепления скважин является создание надежного канала связи пласт-устье скважины и обеспечение надежной изоляции нефтяных, газовых и водоносных пластов, в том числе и с точки зрения охраны окружающей среды. Для решения этих вопросов необходимо рассмотреть большой комплекс вопросов, связанных с расчетом на прочность обсадных труб и колонн при различном сочетании нагрузок, выбором тампонажных материалов и подбором их рецептур, изучением конкретных гидрогеологических условий, способствующих или препятствующих качественному разобщению пластов, изучением особенностей крепления газовых скважин и т. д. Основной задачей при освоении скважины является обеспечение притока пластового флюида в скважину. Эффективность этого вида работ зависит от правильно выбранной величины репрессии на пласт при бурении скважины и депрессии при освоении свойств жидкости находящейся в скважине и многих других факторов. Метод вызова притока выбирают исходя из геологических и технологических условий эксплуатации залежа с учетом индивидуальных особенностей каждой скважины.

В последнее время большое значение в цикле строительства скважин на нефть и газ приобрели работы, связанные с испытаниями пластов. Получение необходимых сведений о пласте позволяет корректировать задачи, решаемые с помощью данной скважины, дать предварительную оценку продуктивным горизонтам, оценить коллекторские свойства пласта и определить прогнозные запасы той или иной залежи.

Вопросами завинчивания скважин у нас в стране занимаются отраслевые институты ВНИИКрнефть, ВНИИнефть, СевКавНИПИнефть, БашНИПИнефть, ТатНИПИнефть, ВолгоградНИПИнефть, учебные институты ГАНГ, Уфимский нефтяной институт. Тюменский индустриальный институт и др. За рубежом проводятся работы американскими фирмами "ДЖОНСТОН", "ХАЛЛИБУРТОН", "ЛАЙИЗ", "ШЛЮМБЕРГЖЕ".

Особая роль в становлении нефтяной промышленности и решении ряда вопросов совершенствования техники и технологии заканчивания скважин принадлежит русским и советским ученым. Так, например, еще в 1859 году горный инженер Г.Д. Романовский использовал цемент как средство борьбы с обводнением, а А. А. Богущевский в 1905 г. предложил и в 1906 г. запатентовал способ цементирования, который спустя пять лет применен Перкинсом. Русские горные инженеры знали и другие способы цементирования скважин и практически их использовали. Буровой техник С. Г. Войслов на собрании членов общества горных инженеров 23 октября 1903 года сделал доклад "О работе по исследованию Муравьевского источника в старой Руссе", где перечислил уже применявшиеся способы борьбы с поступлением воды при бурении скважин, заявив, что он успешно применял цементирование затрубного пространства. В 1910 году Н. А. Соколовским издана книга "Буровые труды вообще и труды новой системы. Крепление и самотампонаж ими глубоких скважин". В этом же году разработан метод цементирования о двумя проходками. Русским ученым Байковым А. А. дано объяснение механизма формирования камня на основе портландцемента. И в настоящее время вопросы совершенствования технологии заканчивания скважин полностью не решены. Много проблем возникло с созданием рецептур тампонажных материалов, удовлетворяющих требованиям цементирования глубоких скважин, вопросы совершенствования технологии цементирования, цементировочной техники, техники по исследованию скважин и ряд других вопросов. По мере чтения курса с достижениями по этим вопросам и проблемам будем знакомиться.

Проницаемость горных пород

Способность пород продуктивных пластов пропускать жидкость называют проницаемостью. Проницаемость характеризуется абсолютной проницаемостью - проницаемость пористой среды при фильтрации через нее какой либо жидкости, химически инертной к породе. В качестве такой жидкости используют сухой воздух или газ.

Для количественной оценки проницаемости обычно используют закон Дарси:

Лекция 1. Элементы физики нефтегазового пласта - student2.ru

где: Q - объемный расход фильтрации;

F - площадь фильтрации;

Р1, Р2 - давление перед и после образца;

h - динамическая вязкость жидкости;

l - длина образца.

Поскольку газ является сжимаемой жидкостью его объемный расход будет непостоянен по длине образца, поэтому объемный расход газа приводит к среднему давлению в образце. Полагают, что газ раcширяется изотермически в соответствии с законом Бойля-Мариота. Отсюда проницаемость по газу определяется из выражения:

Лекция 1. Элементы физики нефтегазового пласта - student2.ru

Размерность проницаемости - м2 за единицу проницаемости в 1м2 принимают проницаемость такой пористой среды, через образец которой длиной 1м и площадью поперечного сечения 1м2 при перепаде давлений 1Па ежесекундно профильтровывается 1м3 жидкости с вязкостью 1Па с. На практике пользуется единицей дарси: 1Д = 1,02 мкм2, 10-12м2.

В продуктивных пластах всегда содержится две или три фазы. Проницаемость для любой из фаз при фильтрации двух или трехфазной жидкости меньше ее абсолютной проницаемости.

Под фазовой проницаемостью понимают проницаемость для данной жидкости при наличии в порах многофазной системы.

Относительная проницаемость - отношение фазовой проницаемости к абсолютной.

Лекция 1. Элементы физики нефтегазового пласта - student2.ru Фазовая и относительная проницаемость для различные фаз зависит от воды, нефте- и газонасыщенности перового пространства. Так, например, если часть пор занята водой, то проницаемость для нефти или газа будет уменьшаться с увеличением содержания воды. При содержании воды меньше 20 % она физически удерживается в тонких и тупиковых порах. Так как часть объема пор занята неподвижной водой, то фильтрация нефти возможна лишь в свободной от воды части сечения поровых каналов; поэтому относительная проницаемость для нефти при такой водонасыщенности не превышает 80 %, а для воды практически равна нулю. При водонасыщенности 80 % проницаемость для нефти падает практически до нуля. Это означает, что нефть, содержащаяся в порах такой породы, прочно удерживается капиллярными силами.

Пластовые воды

Нефтяные и газовые месторождения всегда содержат воду. Воду подразделяют: на верхние - если она насыщает пласт, залегающий выше продуктивного; нижние - ниже продуктивного; подошвенные или краевые - если заполняют поры коллектора под нефтяной (газовой) залежью и вокруг последней; промежуточные - если насыщают проницаемый пропласток в самом продуктивном пласте.

В собственно нефтяной (газовой) части пласта, всегда также, содержится вода, сохранившаяся со времени образования залежи. Эти воды называют остаточными или реликтовыми.

Пластовые воды всегда минерализованы. В них содержатся хлориды, карбонаты, бикарбонаты, углеводородные газы, сероводород и др. Содержание солей в пластовых водах колеблется от нескольких десятков до 300 кг/м3. Концентрация солей в остаточных годах обычно выше, чем в подошвенной.

Вода в пористой среде может существовать в виде:

- капиллярно связанной в узких поровых каналах, в которых в большей степени сказывается влияние капиллярных сил;

- адсорбционной, удерживаемой молекулярными силами у поверхности скелета породы и прочно связанной с частицами скелета;

- пленочной, покрывающей гидрофильные участки поверхности скелета породы;

- свободной.

Виды обсадных колонн

Процесс проводки скважины, как правило, сопровождается предупреждением, а зачастую и ликвидацией (борьбой) различного рода осложнений - обвалы, осыпи, поглощения, нефтеводогазопроявления и т.д. Поэтому при составлении проекта скважины, в зависимости от геологических условий бурения, особенностей залегания горных пород, их физико-механических свойств, величин пластовых температур и давлений, давлений гидроразрыва пород, назначения и цели бурения, предполагаемого метода заканчивания скважины, способа бурения, способа и техники освоения и эксплуатации скважины, уровня организации техники и технологии бурения, геологической изученности района предусматривается разделение зон (интервалов) обладающих несовместимыми условиями бурения, обсадными колоннами.

Все обсадные колонны по своему назначению именуются следующим образом.

Направление - самая первая колонна труб или одна труба, предназначенная для закрепления приустьевой части скважины от размыва буровым раствором и обрушения, а также для обеспечения циркуляции жидкости. Направление, как правило, одно. Однако могут быть случаи крепления скважин двумя направлениями, когда верхняя часть разреза представлена лессовидными почвами, насыпным песком или имеет другие особенности.

Обычно направление спускают в заблаговременно подготовленную шахту или скважину и цементируют до устья.

Кондуктор - колонна обсадных труб предназначена для разобщения верхнего интервала разреза горных пород, изоляции пресноводных горизонтов от загрязнений, монтажа противовыбросового оборудования и подвески последующих обсадных колонн.

Промежуточная обсадная колонна служит для разобщения несовместимых по условиям бурения зон при углублении скважины до намеченной глубины, они могут быть следующих видов:

Сплошные - перекрывающие весь ствол скважины от забоя до устья независимо от крепления предыдущего интервала.

Хвостовики - для крепления только необсаженного, интервала скважины с перекрытием предыдущей обсадной колонны на некоторую величину.

Летучки - специальные промежуточные обсадные колонны, служащие только для перекрытия интервала осложнений и не имеющие связи с предыдущими или последующими обсадными колоннами.

Эксплуатационная колонна - самая последняя колонна обсадных труб, которой крепят скважину для разобщения продуктивных горизонтов от всех остальных пород и извлечения из скважины нефти или газа, или, наоборот для нагнетания в пласты жидкости или газа. Иногда в качестве эксплуатационной колонны может быть использована частично или полностью последняя промежуточная колонна.

Основными параметрами, характеризующими конструкцию скважины, являются количество и диаметр обсадных колонн, глубина их спуска, диаметр долот, высота подъема тампонажного раствора.

Требования к конструкции скважин

Под надежностью конструкции понимается такое техническое состояние закрепленной части ствола скважины, которое позволяет осуществлять комплекс технологических операций, направленных на успешное преодоление возникших осложнений и дальнейшее углубление скважины. При этом конструкция скважины должна отвечать следующим требованиям:

- использование обсадных колонн оптимального диаметра для перекрытия возникших зон осложнений и достижение проектной глубины скважины;

- предупреждение интенсивного механического износа внутренней части обсадных колонн;

- обеспечение передачи на забой максимума гидравлической мощности для выбора оптимального режима бурения;

- наличие возможности создания значительных по абсолютным величинам избыточных внутренних давлений в закрепленной части ствола скважины для борьбы о возникающими газоводонефтепроявлениями или при ожидаемом вскрытии пластов с АВПД.

- исключение затрубных проявлений и межпластовых перетоков;

- обеспечение прочности конструкции скважины в сочетании с герметичностью каждой обсадной колонны и цементного кольца;

- качественное разобщение всех горизонтов и, в первую очередь газовых пластов, являющихся объектами самостоятельной разработки;

- достижение запроектированных режимов эксплуатации скважин, обусловленных проектом разработки горизонта (месторождения);

- применение современных методов испытания, освоения и ремонта скважин.

При достижении указанных требований обеспечиваются наилучшие технико-экономические показатели как процесса бурения, так и последующей эксплуатации скважины.

Конструкции скважины

Наиболее определяющими факторами, влияющими на конструкцию скважины, являются геологические условия бурения, назначение скважины и способ бурения. Остальные факторы являются субъективными и изменяющимися во времени. Эти факторы позволяют упрощать конструкцию скважины, но не являются определяющими.

Рассмотрим вкратце влияние основных факторов на подбор конструкции скважины.

Геологические условия бурения

Следует учитывать:

а) характер пород, вскрываемых скважиной (с точки зрения возможных обвалов, осыпей кавернообразований);

б) наличие зон возможных газо-нефте, и водопроявлений и поглощений промывочной жидкости и условия, при которых эти осложнения возникают;

в) проницаемость пород и пластовые (поровые) давления;

г) температура горных пород по стволу скважины;

д) углы падения пород и частота чередования их по твердости.

Породы с низкой прочностью должны быть перекрыты обсадной колонной сразу же после вскрытия всей ее мощности. В противном случае могут образовываться обвалы. Если мощность неустойчивых пород большая, следует разделить ее на ряд интервалов, которые после проходки закрепляются обсадными колоннами.

Зоны с различным характером осложнений (например, проявления и поглощения) также должны быть изолированы друг от друга, если пластовые давления превосходят давления гидроразрыва пород, так как предупреждение каждого из этих осложнений достигаются противоположными несовместимыми методами. Для предупреждения нефтегазоводопроявлений, осыпей, обвалов требуется вести бурение с применением утяжеленных буровых растворов, а для предупреждения поглощений плотность раствора следует снижать.

Температура горных пород оказывает значительное влияние на физико-механические свойства буровых и тампонажных растворов. Это приводит к необходимости использовать различные несовместимые системы, а следовательно требуется разобщать подобные зоны обсадными колоннами.

Углы падения пород и частота чередования их по твердости при прочих условиях оказывает влияние на угол искривления скважины. Чем больше углы падения пород и чем чаще породы чередуются, тем выше темп набора кривизны. Для успешного выполнения заданной программы крепления необходимо, чтобы углы искривления были минимальными, кроме того, колебания зенитного и азимутального углов являются основной причиной образования желобных выработок в стволе и недопуска обсадной колонной до проектной глубины.

Назначение скважины. Сочетание обсадных колонн различных диаметров, составляющих конструкцию, скважины, зависит от диаметра эксплуатационной колонны.

Диаметр эксплуатационной колонны нефтяной скважины практически выбирают в зависимости от того, какой продукт будет добываться из недр, от дебита скважины, а также возможности производства геофизических, аварийных и ремонтных работ в скважине.

Диаметр эксплуатационных колонн нагнетательных скважин зависит от давления, при котором будет закачиваться рабочий агент в пласт и от приемистости пласта. При выборе диаметра эксплуатационной колонны разведочных скважин на структурах с выявленной продуктивностью нефти или газа решающим фактором является обеспечение условий для проведения опробывания и последующей эксплуатации промышленных объектов.

В разведочных скважинах (поискового характера) на новых площадях диаметр эксплуатационной колонны зависит от необходимого количества спускаемых промежуточных обсадных колонн, качества получаемого кернового материала, от возможности проведения электрометрических работ и испытания вскрытых объектов на приток. Скважины этой категории после спуска последней промежуточной колонны можно бурить диаметром долота 140 мм и меньше с последующим спуском 114 мм эксплуатационной колонны или колонны меньшего диаметра.

Снижение уровня жидкости в скважине при добыче нефти или снижение давления газа обуславливает возникновение сминающих нагрузок. Вследствие этого колонна должна быть составлена из труб такой прочности, чтобы в процессе эксплуатации не произошло бы их смятия. Увеличение диаметра труб снижает их сопротивляемость на смятие. Поэтому для обеспечения длительной работы скважины одним из основных факторов при выборе диаметра эксплуатационной колонны является необходимая прочность на, сминающие и страгивающие усилия, а также и на внутреннее давление.

Метод вскрытия пласта. Метод вскрытия определяют главным образом особенностями продуктивных пластов, наличия пропластковых и подошвенных вод, величиной пластового давления, прочностью давления пород, тип коллекторов (гранулярный, трещиноватый и др.). При нормальных и повышенных давлениях эксплуатационную колонну цементируют через башмак. При пониженных пластовых давлениях, отсутствие пропластковых и подошвенных вод и достаточной прочности пород пласта в некоторых случаях, после вскрытия объекта, эксплуатационную колонну, имеющую фильтр против продуктивных горизонтов, цементируют через боковые отверстия расположенные над кровлей этих горизонтов (манжетной цементирования).

В ряде случаев до вскрытия продуктивных горизонтов, при наличии в разрезе пластов с аномально высокими пластовыми давлениями (АВПД) или непрочных пород, скважины бурят с промывкой забоя буровыми растворами повышенной плотности. Вскрытие объекта с использованием указанных растворов часто сопровождается их поглощением трещиноватыми коллекторами. Освоение таких скважин затрудняется, а иногда заканчиваются безрезультатно. Для успешного вскрытия, а затем освоения таких объектов, плотность буровых растворов должна быть по возможности минимальной. В рассматриваемых случаях вскрытия продуктивных пластов возможно только при условии предварительного перекрытия всего разреза до их кровли промежуточной обсадной колонной при этом эксплуатационная колонна может быть либо сплошной, либо представлена хвостовиком и промежуточной колонной. Если породы продуктивных горизонтов весьма устойчивы, скважины могут эксплуатироваться и без крепления обсадной колонной.

Способ бурения. Бурение скважин осуществляется роторным способом, гидравлическими забойными двигателями или электробурами.

Турбинный способ наиболее эффективен, при проводке вертикальных и наклонных скважин с нормальными условиями бурения с использованием неутяжеленных буровых растворов или воды, особенно при разбуривании прочных карбонатных отложений, характерных для районов Урало-Поволжья, а также Западной Сибири.

Роторный способ эффективен для бурения скважин с применением утяжеленных буровых растворов плотностью более 1500 ¸ 1600 кг/м3 и высокотемпературных скважин на больших глубинах более 3000 м. Кроме того, этот способ эффективен при бурении долотами менее 214 мм и при проходке пластичных глин гидромониторными долотами.

Электробуром бурят небольшое количество скважин, и область эффективности данного способа достаточно четко не установлена.

Особенностью турбинного способа бурения является снижение его эффективности с ростом глубины скважины, а также резкое снижение мощности и крутящего момента с уменьшением диаметра турбобура. Для обеспечения достаточной эффективности работы долота при бурении глубоких скважин используют турбобуры диаметром 168 ¸ 190 мм.

По диаметру турбобуров при заканчивании скважины определяют возможную ее конструкцию.

Диаметр турбобура, мм
Конструкции скважины, мм 377´273´146 (168) 351´245´146 (168)

Еще меньшие возможности имеются для выбора конструкций скважин при использовании электробуров. Наименьший диаметр работоспособного электробура равен 215 мм, поэтому возможно только следующее сочетание обсадных колонн 377´299 (273)´146 (168) мм.

Наиболее широк диапазон возможных сочетаний диаметров обсадных колонн в конструкциях при бурении скважин роторным способом.

Для повышения скорости бурения часто применяют сочетание обоих способов бурения. В этих случаях турбинный способ используется в интервалах, обеспечивающих максимальную его эффективность, и, как правило, на конструкцию скважины он отрицательного влияния, не оказывает.

Основные требования к проектированию конструкции скважины.

При разработке рациональной конструкции глубоких скважин необходимо исходить из условий получения наибольших скоростей бурения при наименьших объемах работ в промежуточных колоннах, выбора минимально допустимых зазоров между колонной и стенками скважины, максимально возможного увеличения глубины выхода спускаемой колонны из под предыдущей, а также из уменьшения диаметра эксплуатационной колонны.

Величина кольцевого зазора и конфигурация ствола скважины должны быть такими, чтобы обеспечивался беспрепятственный допуск обсадной колонны до заданной проектом глубины, подъем тампонажного раствора до намеченной высоты, а при цементировании создавалась надежная изоляция продуктивных и водонасыщенных горизонтов. При определении величины зазора необходимо предусмотреть максимально возможные выходы обсадных колонн из под башмака предыдущей колонны.

Для скважин с высокими пластовыми давлениями необходимо исходить из условий предупреждения специфичных осложнений происходящих при бурения и эксплуатации: прорывов газа за эксплуатационной колонной, переходящие иногда в фонтаны; просачивание газа в межколонное пространство через резьбовые соединения труб; перетока нефти и газа из нижележащих горизонтов в вышележащие; образование грифонов и других осложнений.

Газоконденсатных скважин

В этом случае следует учитывать следующие характерные особенности:

- давление газа на устье близко к забойному, что требует обеспечения наибольшей прочности труб в верхней части колонны;

- небольшая величина вязкости газа обусловливает его высокую проникающую способность, что повышает требования к герметичности резьбовых соединений и затрубного пространства.

- интенсивный нагрев обсадных колонн приводит к возникновению дополнительных температурных напряжений на незацементированных участках колонны. Требуется учет этих явлений при расчете их на прочность.

- возможность газовых выбросов в процессе бурения требует установки соответствующего противовыбросового оборудования;

- длительный срок эксплуатации и связанная с ним возможность коррозии эксплуатационных колонн требует применения антикоррозионного покрытия и пакеров.

Общие требования, предъявляемые к конструкциям газовых и газоконденсатных скважин могут быть сведены к следующим:

- прочность конструкции в сочетании с герметичностью каждой обсадной колонной и цементного кольца в затрубном пространстве;

- качественное разобщение всех горизонтов и в первую очередь газонефтяных пластов, являющихся объектом самостоятельной разработка с возможностью их раздельной эксплуатации;

- максимальное использование пластовой энергии газа для его транспортировки по внутрипромысловым и магистральным газопроводам.

ЛЕКЦИЯ 3. ОБСАДНЫЕ ТРУБЫ.

Изучаемые вопросы.

1. Конструкция обсадных труб.

2. Требования ГОСТ на обсадные трубы.

3. Контроль качества труб и их соединений.

4. Типы обсадных труб.

5. Способы повышения герметичности обсадных труб.

6. Соединения обсадных труб сваркой.

Конструкция обсадных труб

Для крепления скважин применяют специальные обсадные трубы. Используют преимущественно цельнокатаные трубы, изготовляемые по ГОСТ 632-80. Направления и кондуктора иногда составляют из сварных стальных труб. Они имеют вид длинного полого круглого цилиндра, на концах которого нарезана наружная коническая резьба. Соединяются между собой муфтой. Обсадные трубы изготовляют бесшовными с D = 114 ¸ 508 мм и различными толщинами стенок. Толщина стенки трубы увеличивают за счет уменьшения внутреннего диаметра.

Реально трубы всегда отличаются по форме от идеального круглого цилиндра. Поперечное сечение слегка овально, толщина стенки не всегда постоянна не только по длине, но и в поперечном сечении. В связи с этим установлены допуски. Так для обычных обсадных труб с диаметром не более 219 мм и муфт к ним отклонения по наружному диаметру не должно превышать 1 %, для труб большего диаметра 1,25 %, отклонения по толщине стенки должно быть не более минус 12,5 %, по массе отдельной трубы не более +9 % .или - 6 %.

Овальность - отношение разности наибольшего и наименьшего наружных диаметров поперечного сечения трубы и их полусумме.

l - не должна превышать 80 % допускаемых отклонений по наружному диаметру; для труб до 219 мм l £ 1,6

> 2I9 l £ 2.

Обсадные трубы изготавливают из углеродистых и легированных сталей, в которых содержание серы и фосфора не должно превышать 0,045 % каждого, а содержание мышьяка - не более 0,15 %. Обсадные трубы в зависимости от предела прочности стали выпускают следующих типов (марок) - Д, К, Е, Л, Р, Т.

Трубы и муфты к ним, как правило, должны изготовлять из стали одинаковой группы прочности. Допускается, однако, изготовлять муфты к трубам диаметром до 245 мм при толщине стенки не более 10 мм, а также по всем трубам большого диаметра из стали последующей группы прочности, например, к трубам из стали группы прочности К, муфты из стали группы Е. Трубы групп прочности К и выше должны обрабатываться; в стандарте, однако, не указаны виды термообработки.

Согласно ГОСТ 632-80 все обсадные трубы диаметром 219 мм и менее и
50 % труб большего диаметра после навинчивания и закрепления муфт должны на заводе подвергаться испытанию гидравлическим давлением - опрессовка. Продолжительность опрессовки - не менее 10 с. Давление опрессовки рассчитывают так, чтобы эквивалентное напряжение на внутренней поверхности составляло в трубах с наружным диаметром 219 мм не менее 80 %, а в трубах большего диаметра - 60 % от предела текучести материала; при этом предполагают, что диаметр и толщина стенки труб соответствует номинальным значениям. Трубы, при испытании которых обнаружена течь или потение в стенке, не разрешается отгружать потребителю. Если обнаружена течь в резьбовом соединении, соединение должно быть забраковано, а на трубе нарезана новая резьба. После нарезки резьбы обязательно проводится повторная опрессовка.

Обсадные трубы должны быть прямыми. Если между концами трубы туго натянуть нить, стрела прогиба на расстоянии одной трети длины трубы от каждого из ее концов не должна превышать 1,3 мм на каждый метр длины этого участка: посередине трубы прогиб не должен превышать 1/2000 ее длины.

Заводы отгружают обсадные трубы потребителям партиями. Каждая партия снабжается сертификатами, в которых удостоверяется качество труб и соответствие их требованиям стандарта.

Резьбы обсадных труб изготавливаются в соответствие с ГОСТ 632-80 - коническая, треугольного, профиля. Конусность резьбы, т.е. отношение разности диаметров ее в двух поперечных сечениях к расстоянию между последними, равна Лекция 1. Элементы физики нефтегазового пласта - student2.ru . Коническая резьба позволяет путем натяга при свинчивании достичь несколько большей герметичности по сравнению с цилиндрической резьбой при одинаковой точности изготовления. Большая часть обсадных труб, изготовленных по ГОСТ 632-80, имеет соединения с нормальной длиной резьбы. На трубах диаметром 127 и 140 мм с толщиной стенки 7 мм длина резьбы несколько короче нормальной. Стандарт предусматривает также изготовление труб диаметром от 114 до 245 мм включительно и муфт к ним с удлиненной резьбой. Увеличение длины резьбы составляет от 13 % для труб диаметром
114 мм до 40 % для труб диаметром 245 мм.

Указанному типу резьб присуще два недостатка. Во-первых, прочность такого муфтового соединения составляет от 55 до 70 % прочности по телу ненарезанного участка трубы; наиболее слабым является сечение по основной плоскости. Во-вторых, недостаточно высока герметичность их. Поэтому, трубы с такими соединениями целесообразно использовать, прежде всего, в нижних участках обсадных колонн, где прочность на растяжение не является серьезным лимитирующим фактором, а избыточное внутреннее давление сравнительно невелико.

Прочность соединений можно существенно повысить, если треугольный профиль резьбы с большим углом при вершине заменить трапецеидальным с малыми углами наклона боковых граней. В последние годы применяются трубы, на которых нарезана трапецеидальная резьба с конусностью Лекция 1. Элементы физики нефтегазового пласта - student2.ru . Посадка резьбы осуществляется по внутреннему и наружному ее диаметрам. Трубы с такими соединениями имеют шифр OTTM-1 (обсадные трубы с трапецеидальной резьбой, с муфтами). Прочность на растяжение на 25 ¸ 50 % выше, чем соединений с резьбой треугольного профиля.

Трубы с муфтовыми соединениями повышенной герметичности имеют шифр ОТТГ-1. Они снабжены резьбой такого же профиля, что и трубы ОТТМ-1, но отличаются от последних, во-первых, наличием уплотнительных поверхностей - наружной у ниппельного конца трубы и внутренней - в серединной части муфты: во-вторых, тем, что резьбовое соединение закрепляется до упора торца трубы в срединный выступ муфты. При таком закреплении соединения создается посадка по уплотнительным коническим поверхностям и по внутреннему и наружному диаметрам резьбы, точно фиксируется заданный диаметральный натяг (0,5 мм), устраняется зазор между соединяемыми деталями, чем достигается более высокая герметичность. Отклонения по конусности гладких уплотнительных поверхностей трубы и муфты на длине 14 мм не должны превышать ± 0,03 мм.

Существуют безмуфтовые соединения труб с утолщенными концами и труб с постоянной по длине толщиной стенок. Трубы с утолщенными концами разработаны в двух вариантах. У трубы ТБО-4 (трубы безмуфтовые обсадные) утолщенные оба конца; на одном из концов нарезана наружная, а на другом - внутренняя коническая трапецеидальная резьба. В трубах ТБО-5 утолщен только один конец, на котором нарезана внутренняя резьба; на другом, неутолщенном конце имеется наружная резьба. Профиль и размеры трапецеидальных резьб на трубах ТБО такие же, как и на трубах ОТТМ-1.

На концах труб ТБО так же, как и на трубах ОТТГ-1 имеются гладкие конические уплотнительные поверхности. Соединения закрепляются до упора торцов. Трубы ТБО и ОТТГ-1 можно соединять друг с другом без дополнительных переводников.

Безмуфтовые трубы ОГ-1 м с постоянной по длине толщиной стенок снабжены на одном конце наружной, а на другом внутренней конической резьбой трапецеидального профиля. Конусность 1/12.

Резьбовое соединение закрепляется до упора торцов. Посадка резьбы происходит по внутреннему диаметру ее; кроме того, для увеличения жесткости муфтового конца предусмотрена посадка по срезанным вершинам профиля на участке от начала сбега резьбы на ниппельном конце трубы до упорного уступа. Характерной особенностью обсадных колонн, составленных из труб ОГ-1 м, является постоянство наружного диаметра по всей длине.

Зона проникновения.

В водоносные пласты проникновение фильтрата происходит под действием динамических сил - перепады давления. В нефтегазоносных пластах участвуют еще и капиллярные силы. Под действием этих сил пластовый флюид в прискважинной части пласта замещается на фильтрат раствора. Участок от точки внедрения вытесняющей жидкости до резкого изменения водонасыщения получил название - зона проникновения.

Влияние фильтрата на коллекторские свойства пластов носит сложный характер. Во-первых, проникая в пласт, фильтрат увлажняет породу, а также способствует увеличению ее гидрофильности. Это приводит к увеличению толщины гидратных оболочек, и естественно к снижению эффективного сечения порового пространства. Повышение водонасыщенности способствует уменьшению фазовой проницаемости.

Во-вторых, присутствие в составе слагающих пласт пород, как правило, присутствует глинистая фаза. Воздействие фильтрата на последнюю вызывает ее набухание, что также ведет к уменьшению размеров пор.

В третьих, проникая в продуктивный пласт фильтрат, оттесняет пластовый флюид. Кроме того, вследствие меньшей вязкости фильтрата по сравнению с нефтью, фильтрат в порах может двигаться быстрее. В результате возможно образование смеси водного фильтрата и нефти. При движении же эмульсии в пористой среде возникают значительно большие, гидравлические сопротивления, нежели при движении однородной жидкости.

В четвертых, в фильтрате содержаться различные химическиe вещества, которые при взаимодействии с породой могут образовывать либо хорошо растворимые, либо плохо растворимые соединения. Очевидно, что при этом структура порового пространства меняется.

Снижение проницаемости коллектора под воздействием фильтрата, как правило меньше, чем в результате кольматации частицами твердой фазы. Однако глубина проникновения фильтрата в пласт, во много раз больше толщины зоны кольматации. Наиболее интенсивно фильтрат проникает в пласт в период бурения и промывки скважины. После прекращения промывки скорость проникновения уменьшается.

Кроме перепада давления и капиллярных сил на проникновение фильтрата в пласт оказывают влияние и осмотические силы. Последние возникают на контакте двух растворов с разной минерализацией, разделенных полунепроницаемой перегородкой. Они тем выше, чем больше разность концентраций. В скважине рол

Наши рекомендации