Задание 1. СТАТИСТИЧЕСКОЕ РАСПРЕДЕЛЕНИЕ

ВВЕДЕНИЕ

Самостоятельное выполнение студентами заданий является одним из важнейших условий усвоения математической статистики.

Предлагаемые методические указания составлены таким образом, чтобы студент, пользуясь ими, решил самостоятельно поставленные перед ним задачи.

Методические указания включают четыре задания по математической статистике: «Статистическое распределение», «Проверка статистических гипотез», «Корреляция», «Метод наименьших квадратов».

Построение каждого задания следующее. Вначале сформулировано само задание. Затем дается решение типового примера на конкретных данных выборки объема 100. Приведены формулы, расчеты, чертежи. Сделаны соответствующие выводы.

Выполнение задания «Метод наименьших квадратов» предполагается на ЭВМ. Дана программа и образец распечатки результатов для отчетности студента.

В приложениях кроме таблиц функции Лапласа и критерия согласия Пирсона (приложения 1,2) даны таблицы данных эффективности сельскохозяйственного производства для выполнения заданий, по которым можно выдать необходимое количество вариантов.

Приложение 3 содержит практический материал для заданий 1–3, приложение 4 – для задания 4.

Методические указания составлены для студентов экономических специальностей, однако могут быть использованы студентами всех факультетов.

РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА

1. Сборник индивидуальных заданий по теории вероятностей и математической статистике: учеб. пособие/ А.П. Рябушко, В.В. Бархатов, В.В. Державец, И.Е. Юруть; под общ. ред. А.П. Рябушко. Минск: Выш.шк., 1992.

2. М а ц к е в и ч И.П. Высшая математика. Теория вероятностей и математическая статистика: учебник / И.П. Мацкевич, Г.П. Свирид. Минск: Выш.шк., 1993.

3. К р а с с М.С. Основы математики и ее приложения в экономическом образовании: учебник / М.С.Красс, Б.П.Чупрынов. 2-е изд., испр. М.: Дело, 2001.

4. Г у с а к А.А. Высшая математика. Т. 2 / А.А. Гусак. Минск: Тетра Системс, 2000.

5. Б е л ь к о И.В. Теория вероятностей и математическая статистика. Примеры и задачи: учеб. пособие/ И.В. Белько, Г.П. Свирид; под ред. К.К.Кузьмича. 2-е изд., стер. Минск: Новое знание, 2004.

6. П и с ь м е н н ы й Д.Т. Конспект лекций по теории вероятностей и математической статистике / Д.Т.Письменный. М.: Айрис – пресс, 2004.

7. Г р и н б е р г А.С. Теория вероятностей и математическая статистика: курс лекций/ А.С. Гринберг, О.Б. Плющ, Б.В. Новыш . 3-е изд. доп. Минск: Академия управления при Президенте Республики Беларусь, 2005.

Задание 1. СТАТИСТИЧЕСКОЕ РАСПРЕДЕЛЕНИЕ

По статистическим данным случайных величин (СВ) Х и У требуется:

1) составить интервальные статистические ряды распределения частот и частостей;

2) построить гистограмму и полигон частостей;

3) составить эмпирические функции распределения F*(x) и F*(y), поcтроить их графики;

4) вычислить числовые характеристики выборки: среднюю выборочную Задание 1. СТАТИСТИЧЕСКОЕ РАСПРЕДЕЛЕНИЕ - student2.ru Задание 1. СТАТИСТИЧЕСКОЕ РАСПРЕДЕЛЕНИЕ - student2.ru , дисперсию выборочную Задание 1. СТАТИСТИЧЕСКОЕ РАСПРЕДЕЛЕНИЕ - student2.ru Задание 1. СТАТИСТИЧЕСКОЕ РАСПРЕДЕЛЕНИЕ - student2.ru ( Задание 1. СТАТИСТИЧЕСКОЕ РАСПРЕДЕЛЕНИЕ - student2.ru , среднее квадратическое выборочное отклонение Задание 1. СТАТИСТИЧЕСКОЕ РАСПРЕДЕЛЕНИЕ - student2.ru ( Задание 1. СТАТИСТИЧЕСКОЕ РАСПРЕДЕЛЕНИЕ - student2.ru , асимметрию и эксцесс Аs(Х) (Аs(У)), Задание 1. СТАТИСТИЧЕСКОЕ РАСПРЕДЕЛЕНИЕ - student2.ru выборочный коэффициент вариации V(Х) (V(У)).

Решение типового варианта

Методику выполнения этого задания покажем на примере статистических данных (табл. 1) , где СВ Х – стоимость основных производственных фондов ( y.е/га) , СВ У – стоимость валовой продукции (y.е/га).

1. Изучение непрерывной случайной величины ( НСВ) начинается с группировки статистического материала, т.е. с разбиения интервала наблюденных значений СВ Х на k частичных интервалов равной длины и подсчета частот попадания наблюденных значений СВ Х в частичные интервалы. Количество интервалов можно выбирать произвольно, их число обычно бывает не менее 5 и не более 15. Можно для определения числа интервалов использовать формулу Задание 1. СТАТИСТИЧЕСКОЕ РАСПРЕДЕЛЕНИЕ - student2.ru

где n – объем выборочной совокупности. При объеме выборки n = 100 имеем Задание 1. СТАТИСТИЧЕСКОЕ РАСПРЕДЕЛЕНИЕ - student2.ru Далее определяют размах вариации R, длину интервала наблюденных СВ Х, Задание 1. СТАТИСТИЧЕСКОЕ РАСПРЕДЕЛЕНИЕ - student2.ru , где Задание 1. СТАТИСТИЧЕСКОЕ РАСПРЕДЕЛЕНИЕ - student2.ru – наименьшее значение СВ Х, Задание 1. СТАТИСТИЧЕСКОЕ РАСПРЕДЕЛЕНИЕ - student2.ru – наибольшее ее значение.

Определив размах вариации, определяют ширину частичного интервала. Ширина частичного интервала должна способствовать выявлению основных черт распределения и сглаживанию случайных колебаний признака в выборочной совокупности.

Т а б л и ц а 1. Статистические данные

№ п.п.   X   У № п.п.   X   У № п.п.   X   У
0,73 0,60 1,48 1,50 0,68 0,53
0,82 0,61 1,39 1,48 0,89 0,82
0,89 0,95 0,96 0,89 1,27 1,40
1,79 1,22 1,29 1,25 1,33 1,29
1,41 0,88 0,96 0,81 0,92 0,65
0,80 0,58 1,28 1,17 0,93 0,58
0,83 0,50 1,53 1,42 1,16 0,80
0,57 0,70 1,68 1,81 1,04 0,93
1,15 0,77 1,43 1,51 0,98 0,62
1,41 1,41 0,99 1,17 0,88 1,09
1,35 0,92 1,19 0,95 1,39 1,44
0,97 0,56 1,05 0,98 1,21 1,12
0,92 0,67 0,94 0,79 1,06 1,33
0,78 0,58 0,87 0,91 0,80 0,90
0,97 0,87 1,22 1,10 0,92 0,61
1,13 1,25 1,29 1,23 1,08 0,63
1,16 1,05 1,10 0,99 0,98 0,89
1,27 1,01 1,07 0,87 1,10 1,02
0,93 0,94 1,20 1,11 0,74 0,68
1,12 0,88 0,97 1,10 1,12 0,75
1,24 1,15 1,34 1,08 0,95 0,89
1,04 0,93 1,54 1,40 1,06 0,92
0,95 0,60 1,28 1,51 0,72 0,58
0,96 0,69 1,20 0,86 1,21 1,13
1,08 0,69 0,99 0,62 0,83 0,67
1,27 0,84 0,85 0,56 0,91 0,78
1,81 1,04 0,80 0,83 0,98 0,66
1,79 1,13 1,07 0,75 1,20 0,94
1,33 1,20 0,94 0,88 0,94 0,59
1,05 1,10 0,88 0,93 1,02 0,86
0,85 0,70 1,36 1,16      
0,99 0,75 1,24 1,39      
1,12 0,99 0,89 0,77      
0,89 0,58 0,77 0,83      
0,85 0,67 1,10 0,74      

При построении частичных интервалов рекомендуется за начало первого интервала х0 взять Задание 1. СТАТИСТИЧЕСКОЕ РАСПРЕДЕЛЕНИЕ - student2.ru , где h – ширина частичного интервала, определяемая по формуле Задание 1. СТАТИСТИЧЕСКОЕ РАСПРЕДЕЛЕНИЕ - student2.ru , тогда границы частичных интервалов находятся следующим образом:

хо= хminЗадание 1. СТАТИСТИЧЕСКОЕ РАСПРЕДЕЛЕНИЕ - student2.ru , х1о + h, х21 + h, …, Задание 1. СТАТИСТИЧЕСКОЕ РАСПРЕДЕЛЕНИЕ - student2.ru .

В нашем случае, как определили ранее, k = 7, xmin=0,57, xmax=1,81, тогда R = xmax – xmin= 1,81– 0,57 = 1,24 и ширина частичного интервала есть Задание 1. СТАТИСТИЧЕСКОЕ РАСПРЕДЕЛЕНИЕ - student2.ru . Если при нахождении h деление не выполняется нацело, то результат округляют в большую сторону.

Далее имеем Задание 1. СТАТИСТИЧЕСКОЕ РАСПРЕДЕЛЕНИЕ - student2.ru и получаем

Задание 1. СТАТИСТИЧЕСКОЕ РАСПРЕДЕЛЕНИЕ - student2.ru

Задание 1. СТАТИСТИЧЕСКОЕ РАСПРЕДЕЛЕНИЕ - student2.ru

Задание 1. СТАТИСТИЧЕСКОЕ РАСПРЕДЕЛЕНИЕ - student2.ru

Задание 1. СТАТИСТИЧЕСКОЕ РАСПРЕДЕЛЕНИЕ - student2.ru

Задание 1. СТАТИСТИЧЕСКОЕ РАСПРЕДЕЛЕНИЕ - student2.ru

Задание 1. СТАТИСТИЧЕСКОЕ РАСПРЕДЕЛЕНИЕ - student2.ru

Задание 1. СТАТИСТИЧЕСКОЕ РАСПРЕДЕЛЕНИЕ - student2.ru

Задание 1. СТАТИСТИЧЕСКОЕ РАСПРЕДЕЛЕНИЕ - student2.ru

Если бы Задание 1. СТАТИСТИЧЕСКОЕ РАСПРЕДЕЛЕНИЕ - student2.ru выражалось десятичной дробью с двумя знаками после запятой, то границы частичных интервалов имели бы такой же вид, и тогда при подсчете частот в каждый интервал включаются те значения СВ Х, которые больше нижней границы и меньше или равны верхней границе соответствующего частичного интервала. Сумма всех частот должна быть равна объему выборки, т.е. Задание 1. СТАТИСТИЧЕСКОЕ РАСПРЕДЕЛЕНИЕ - student2.ru .

Шкала интервалов и группировка исходных статистических данных сведены в табл. 2. В результате получили статистический ряд распределения частот.

Т а б л и ц а 2. Подсчет частот СВ Х

Интервалы наблюден- ных значе- ний СВ Х 0,465– 0,675 0,675– 0,885 0,885– 1,095 1,095– 1,305 1,305– 1,515 1,515– 1,725 1,725– 1,935
Подсчет частот     I IIIIIIIII IIIIIIIII IIIIIIIIII IIIIIIIIII IIIIIIIIII IIIIIIII IIIIIIIII IIIIIIIII IIIIIIII   IIIIIIIII II   III III
Частоты mi                

Контроль: Задание 1. СТАТИСТИЧЕСКОЕ РАСПРЕДЕЛЕНИЕ - student2.ru

Для получения статистического ряда частостей разделим частоты Задание 1. СТАТИСТИЧЕСКОЕ РАСПРЕДЕЛЕНИЕ - student2.ru на объем выборки. В результате получаем интервальный статистический ряд распределения частостей. В табл. 3 представлен интервальный статистический ряд распределения частот и частостей СВ Х.

Т а б л и ц а 3. Интервальный статистический ряд распределения СВ Х

Интервалы наблюден- ных значе- ний СВ Х 0,465– 0,675 0,675– 0,885 0,885– 1,095 1,095– 1,305 1,305– 1,515 1,515– 1,725 1,725– 1,935
Частоты Задание 1. СТАТИСТИЧЕСКОЕ РАСПРЕДЕЛЕНИЕ - student2.ru              
Частости Задание 1. СТАТИСТИЧЕСКОЕ РАСПРЕДЕЛЕНИЕ - student2.ru   0,01   0,18   0,38   0,26   0,11   0,03   0,03
Задание 1. СТАТИСТИЧЕСКОЕ РАСПРЕДЕЛЕНИЕ - student2.ru –накопленные частости   0,01   0,19   0,57   0,83   0,94   0,97   1,00
Задание 1. СТАТИСТИЧЕСКОЕ РАСПРЕДЕЛЕНИЕ - student2.ru   0,05   0,86   1,80   1,24   0,52   0,14   0,14

Контроль: Задание 1. СТАТИСТИЧЕСКОЕ РАСПРЕДЕЛЕНИЕ - student2.ru

2. Для построения гистограммы частостей на оси ОХ откладывают частичные интервалы, на каждом из которых строят прямоугольник, площадь которого равна частости соответствующего частичного интервала. Полученная при этом ступенчатая фигура называется гистограммой частостей. Если частости отнести к серединам частичных интервалов, то полученная ломаная линия образует полигон частостей.

На рис.1 изображены гистограмма и полигон частостей.

Задание 1. СТАТИСТИЧЕСКОЕ РАСПРЕДЕЛЕНИЕ - student2.ru

Рис. 1.

3. Значения эмпирической функции распределения F*(x) записаны в соответствующей строке табл. 3. Составим аналитическое выражение для эмпирической функции распределения F*(x).

Задание 1. СТАТИСТИЧЕСКОЕ РАСПРЕДЕЛЕНИЕ - student2.ru

Замечание. При построении графика эмпирической функции распределения ее значения относят к верхней границе частичного интервала. График эмпирической функции изображен на рис.2.

Задание 1. СТАТИСТИЧЕСКОЕ РАСПРЕДЕЛЕНИЕ - student2.ru

Рис. 2.

4. Числовые характеристики выборки найдем по формулам:

Задание 1. СТАТИСТИЧЕСКОЕ РАСПРЕДЕЛЕНИЕ - student2.ru – средняя выборочная,

Задание 1. СТАТИСТИЧЕСКОЕ РАСПРЕДЕЛЕНИЕ - student2.ru – дисперсия выборочная,

Задание 1. СТАТИСТИЧЕСКОЕ РАСПРЕДЕЛЕНИЕ - student2.ru – выборочное среднее квадратическое отклонение,

Задание 1. СТАТИСТИЧЕСКОЕ РАСПРЕДЕЛЕНИЕ - student2.ru –асимметрия,

Задание 1. СТАТИСТИЧЕСКОЕ РАСПРЕДЕЛЕНИЕ - student2.ru – эксцесс,

Задание 1. СТАТИСТИЧЕСКОЕ РАСПРЕДЕЛЕНИЕ - student2.ru – выборочный коэффициент вариации,

где хi и mi – соответственно середина и частота i-го интервала.

Составим табл. 4 для вычисления числовых характеристик СВ Х.

Т а б л и ц а 4. Вычисление числовых характеристик СВ Х

Интервалы наблюденных значений СВ Х Середины интервалов хi Частоты Задание 1. СТАТИСТИЧЕСКОЕ РАСПРЕДЕЛЕНИЕ - student2.ru   Задание 1. СТАТИСТИЧЕСКОЕ РАСПРЕДЕЛЕНИЕ - student2.ru   Задание 1. СТАТИСТИЧЕСКОЕ РАСПРЕДЕЛЕНИЕ - student2.ru   Задание 1. СТАТИСТИЧЕСКОЕ РАСПРЕДЕЛЕНИЕ - student2.ru   Задание 1. СТАТИСТИЧЕСКОЕ РАСПРЕДЕЛЕНИЕ - student2.ru   Задание 1. СТАТИСТИЧЕСКОЕ РАСПРЕДЕЛЕНИЕ - student2.ru   Задание 1. СТАТИСТИЧЕСКОЕ РАСПРЕДЕЛЕНИЕ - student2.ru
0,465-0,675   0,57     0,57   – 0,5229   – 0,5229   0,2734   – 0,1429   0,0748
0,675-0,885   0,78     14,04   – 0,3129   – 5,6322   1,7622   – 0,6534   0,1728
0,885-1,095   0,99     37,62   – 0,1029   – 3,9102   0,4028   – 0,0418   0,0038
1,095-1,305   1,20     31,20   0,1071   2,7846   0,2990   0,0312   0,0026
1,305-1,515   1,41     15,51   0,3171   3,4881   1,1066   0,3509   0,1111
1,515-1,725   1,62     4,86   0,5271   1,5813   0,8334   0,4392   0,2316
1,725-1,935   1,83     5,49   0,7331   2,2113   1,6299   1,2015   0,8856
  Cумма       109,29       6,3073   1,1847   1,4823

Задание 1. СТАТИСТИЧЕСКОЕ РАСПРЕДЕЛЕНИЕ - student2.ru

Задание 1. СТАТИСТИЧЕСКОЕ РАСПРЕДЕЛЕНИЕ - student2.ru

Задание 1. СТАТИСТИЧЕСКОЕ РАСПРЕДЕЛЕНИЕ - student2.ru

Задание 1. СТАТИСТИЧЕСКОЕ РАСПРЕДЕЛЕНИЕ - student2.ru

Задание 1. СТАТИСТИЧЕСКОЕ РАСПРЕДЕЛЕНИЕ - student2.ru

Задание 1. СТАТИСТИЧЕСКОЕ РАСПРЕДЕЛЕНИЕ - student2.ru

Аналогичным образом выполним это задание для СВ У – стоимость валовой продукции (у. е/га).

1. Составим интервальный статистический ряд частот и частостей СВ У (табл. 5, 6).

Задание 1. СТАТИСТИЧЕСКОЕ РАСПРЕДЕЛЕНИЕ - student2.ru .

Задание 1. СТАТИСТИЧЕСКОЕ РАСПРЕДЕЛЕНИЕ - student2.ru .

Задание 1. СТАТИСТИЧЕСКОЕ РАСПРЕДЕЛЕНИЕ - student2.ru

Задание 1. СТАТИСТИЧЕСКОЕ РАСПРЕДЕЛЕНИЕ - student2.ru

Т а б л и ц а 5. Подсчет частот СВ У

Интервалы наблюден- ных значе- ний СВ У 0,39–0,61 0,61–0,83 0,83–1,05 1,05–1,27 1,27–1,49 1,49–1,71 1,71–1,93
Подсчет частот   IIIIIII IIIIIII IIIIIIIII IIIIIIIII IIIIIIII IIIIIIIII IIIIIIIII IIIIIIIII II IIIIIIIII IIIIIIIII IIIIIIIII III I
Частоты mi                

Контроль: Задание 1. СТАТИСТИЧЕСКОЕ РАСПРЕДЕЛЕНИЕ - student2.ru .

Т а б л и ц а 6. Интервальный статистический ряд распределения СВ У

Интервалы наблюден- ных значе- ний СВ У 0,39–0,61 0,61–0,83 0,83–1,05 1,05–1,27 1,27–1,49 1,49–1,71 1,71–1,93
Частоты Задание 1. СТАТИСТИЧЕСКОЕ РАСПРЕДЕЛЕНИЕ - student2.ru                
Частости Задание 1. СТАТИСТИЧЕСКОЕ РАСПРЕДЕЛЕНИЕ - student2.ru   0,14   0,26   0,29   0,18   0,09   0,03   0,01
Задание 1. СТАТИСТИЧЕСКОЕ РАСПРЕДЕЛЕНИЕ - student2.ru –накопленные частости   0,14   0,40   0,69   0,87   0,96   0,99   1,00
Задание 1. СТАТИСТИЧЕСКОЕ РАСПРЕДЕЛЕНИЕ - student2.ru   0,64   1,2   1,3   0,82   0,4   0,14   0,05

Контроль: Задание 1. СТАТИСТИЧЕСКОЕ РАСПРЕДЕЛЕНИЕ - student2.ru

2. Построим гистограмму и полигон частостей СВ У (рис.3).

Задание 1. СТАТИСТИЧЕСКОЕ РАСПРЕДЕЛЕНИЕ - student2.ru

Рис. 3.

3. Составим эмпирическую функцию распределения Задание 1. СТАТИСТИЧЕСКОЕ РАСПРЕДЕЛЕНИЕ - student2.ru и построим ее график (рис. 4).

Задание 1. СТАТИСТИЧЕСКОЕ РАСПРЕДЕЛЕНИЕ - student2.ru Задание 1. СТАТИСТИЧЕСКОЕ РАСПРЕДЕЛЕНИЕ - student2.ru Задание 1. СТАТИСТИЧЕСКОЕ РАСПРЕДЕЛЕНИЕ - student2.ru

Задание 1. СТАТИСТИЧЕСКОЕ РАСПРЕДЕЛЕНИЕ - student2.ru

Рис. 4.

4. Вычислим числовые характеристики выборки (табл.7) ( Задание 1. СТАТИСТИЧЕСКОЕ РАСПРЕДЕЛЕНИЕ - student2.ru

Задание 1. СТАТИСТИЧЕСКОЕ РАСПРЕДЕЛЕНИЕ - student2.ru

Задание 1. СТАТИСТИЧЕСКОЕ РАСПРЕДЕЛЕНИЕ - student2.ru

Задание 1. СТАТИСТИЧЕСКОЕ РАСПРЕДЕЛЕНИЕ - student2.ru

Задание 1. СТАТИСТИЧЕСКОЕ РАСПРЕДЕЛЕНИЕ - student2.ru

Задание 1. СТАТИСТИЧЕСКОЕ РАСПРЕДЕЛЕНИЕ - student2.ru

Задание 1. СТАТИСТИЧЕСКОЕ РАСПРЕДЕЛЕНИЕ - student2.ru

Наши рекомендации