Проверка значимости уравнение и коэффициентов уравнения регрессии
Для полученного уравнения регрессии определяется -статистика – характеристика точности уравнения регрессии, представляющая собой отношение той части дисперсии зависимой переменной которая объяснена уравнением регрессии к необъясненной (остаточной) части дисперсии. Уравнение для определения -статистики в случае многомерной регрессии имеет вид:
где: – объясненная дисперсия – часть дисперсии зависимой переменной Y которая объяснена уравнением регрессии;
– остаточная дисперсия – часть дисперсии зависимой переменной Y которая не объяснена уравнением регрессии, ее наличие является следствием действия случайной составляющей;
– число точек в выборке;
– число переменных в уравнении регрессии.
Модели и Основные понятия корреляционного и регрессионного анализа
В то же время выделяют корреляционный анализ в узком смысле – когда исследуется сила связи – и регрессионный анализ, в ходе которого оцениваются ее форма и воздействие одних факторов на другие.
Задачи собственнокорреляционного анализа сводятся к измерению тесноты связи между варьирующими признаками, определению неизвестных причинных связей и оценке факторов оказывающих наибольшее влияние на результативный признак.
Задачирегрессионного анализа лежат в сфере установления формы зависимости, определения функции регрессии, использования уравнения для оценки неизвестных значении зависимой переменной.
Линейная корреляционная зависимость и линии регрессии.
Линейная регрессия -используемая в статистике регрессионная модель зависимости одной (объясняемой, зависимой) переменной y от другой или нескольких других переменных (факторов, регрессоров, независимых переменных) x с линейной функцией зависимости.
Модель линейной регрессии является часто используемой и наиболее изученной вэконометрике. А именно изучены свойства оценок параметров, получаемых различными методами при тех или иных предположениях о вероятн-ых характеристиках факторов и случайных ошибок модели. Предельные (асимптотические) свойства оценок нелинейных моделей также выводятся исходя из аппроксимации последних лин-ми моделями. Необходимо отметить, что с эконометрической точки зрения более важное значение имеет линейность по параметрам, чем линейность по факторам модели.
Корреляционная зависимость. Условимся обозначать через Х независимую переменную. а через У—зависимую переменную.