Изучение взаимосвязи переменных по данным временных рядов
Изучение взаимосвязи экономических переменных по данным временных рядов осложнено тем, что в этих рядах может быть тенденция. Если в ряду динамики переменной у и в ряду динамики х есть компонента «Т», то в результате мы получим тесную связь между у и х. Однако из этого факта еще нельзя делать вывод о том, что изменение х есть причина изменения у, то есть что между этими изменениями есть причинно-следственная связь.
Например, за последние 10 – 15 лет в Российской Федерации сократилось поголовье КРС и увеличилось число крестьянских (фермерских) хозяйств. Коэффициент корреляции между уровнями этих рядов динамики высок по величине; знак указывает на обратную связь. Однако это не означает, что рост численности фермерских хозяйств явился фактором снижения поголовья. Чтобы выявить причинно-следственную зависимость между переменными, необходимо устранить ложную корреляцию между ними, вызванную наличием тенденции.
Существует несколько способов исключения тенденции в рядах динамики. Первый способ называется метод отклонений от тренда. Пусть имеется уt= Т + е и хt= Т + е. Проводится аналитическое выравнивание каждого ряда: и , где Ту и Тх – это оценки трендовых компонент. Затем определяется остаток в каждом наблюдении и
,так как остаточная компонента не содержит тенденции. Далее изучается зависимость между самими остатками еу=f(ех). Если между переменными есть связь, то она проявится в согласованном изменении остатков. Недостатком данного способа является то, что содержательная интерпретация параметров такой модели затруднительна. Однако модель может быть использована для прогнозов и, кроме того, коэффициент парной корреляции между остатками отразит связь переменных.
Второй способ преодоления тенденции в рядах динамики – это метод последовательных разностей. Если временной ряд содержит ярко выраженную линейную тенденцию, то для ее устранения можно заменить исходные уровни разностями первого порядка, то есть цепными абсолютными приростами: и . Далее прирост у рассматривается как функция прироста х: . Рассмотрим математическое доказательство исключения тенденции в этом случае.
Доказательство
=(а+bt+et)-(a+b(t-1)+et-1)=b+( et - et-1).
Мы видим, что величина исключает фактор времени, так как b – константа, а остатки по предпосылкам МНК не должны содержать тенденции, то есть должны быть случайными и независимыми.
Недостатком второго способа является потеря информации (приростов на единицу меньше, чем уровней), что в условиях малого числа наблюдений крайне нежелательно. Достоинством является возможность интерпретации параметров. Коэффициент регрессии b покажет изменение прироста результата при единичном изменении прироста фактора.
Третьим способом является включение в модель регрессии фактора времени: yt= a+b1x1+ b2 t. В данном случае коэффициенты чистой регрессии легко интерпретируются, имеют естественные единицы измерения. Коэффициент b1 покажет на сколько единиц изменится результат при единичном изменении фактора при условии существования неизменной тенденции; коэффициент b2 отразит влияние всех прочих факторов, формирующих тенденцию, кроме x1. Однако данный способ построения регрессионной модели требует большего объема наблюдений, так как в модели появляется еще один параметр.
Если тренды признаков являются экспонентами (или показательными функциями), то вместо корреляции абсолютных отклонений от трендов можно применить метод корреляции цепных темпов роста уровней, поскольку именно темпы роста – основной параметр экспоненциальных и показательных трендов.