Методика выполения работы

Б.3 Б.4 СТАТИСТИКА

Статистические методы анализа динамики социально-экономических явлений и процессов

Методические указания

Направление подготовки бакалавра

Экономика

Уфа 2015

УДК 311

ББК 60.6

А 14

Рекомендовано к изданию методической комиссией экономического факультета (протокол № 1 от «28» августа 2015 г.)

Ответственный за выпуск: заведующий кафедрой бухгалтерского учета, статистики и информационных систем в экономике к.э.н., доцент А.М. Аблеева

ВВЕДЕНИЕ

Ряд динамики, хронологический ряд, динамический ряд, временной ряд – это последовательность упорядоченных во времени числовых показателей, характеризующих уровень развития социально-экономического явления. При изучении явления во времени исследователь часто сталкивается с необходимостью описать интенсивность изменения явления и выявить основную тенденцию его развития.

Цель работы: выявить основную тенденцию развития динамики исследуемого явления с использованием пакетов прикладных программ «EXCEL», «STRAZ» и выполнить прогноз на перспективу.

Задачи:

- рассчитать показатели изменения уровней ряда динамики;

- выполнить выравнивание ряда динамики исследуемого явления с помощью методов механического выравнивания и плавного уровня;

- провести аналитическое выравнивание ряда динамикис использованием пакетов прикладных программ «EXCEL», «STRAZ»; отобрать функцию в качестве тренда;

- на основе отобранной функции в качестве тренда, рассчитать показатели колеблемости и сделать прогноз с расчетом точечных прогнозов и доверительных интервалов прогнозной оценки.

РЯДЫ ДИНАМИКИ

Процесс развития, движения социально-экономических явлений во времени в статистике принято называть динамикой. Для отображения динамики строят ряды динамики.

Ряд динамики – ряд числовых значений определенного статистического показателя в последовательные моменты или периоды времени.

Составными элементами ряда динамики являются показатели уровней ряда (У) и периоды времени (годы, месяцы, сутки) или моменты (даты) времени (t).

Ряды динамики можно классифицировать по следующим признакам.

1. В зависимости от способа выражения уровней ряды динамики подразделяются на ряды абсолютных, относительных и средних величин.

2. В зависимости от того, как выражают уровни ряда состояние явления на определенные моменты времени (на начало месяца, года и т.п.) или его величину за определенные интервалы времени (за сутки, месяц, год и т. п.), различают соответственно моментные и интервальные ряды динамики.

3. В зависимости от расстояния между уровнями ряды динамики подразделяются на ряды динамики с равноотстоящими уровнями и неравноотстоящими уровнями во времени.

Анализ скорости и интенсивности развития явления во времени осуществляется с помощью статистических показателей, которые получаются в результате сравнения уровней между собой. К таким показателям относятся: абсолютный прирост, темп роста, темп прироста и абсолютное значение одного процента прироста (таблица 1.1). При этом принято сравниваемый уровень называть отчетным, а уровень с которым производят сравнение, - базисным.

Таблица 1.1 Способы расчета показателей ряда динамики

Показатели Способы расчета
базисный цепной
Абсолютный прирост, ц методика выполения работы - student2.ru б = Уi – У1 методика выполения работы - student2.ru
Средний абсолютный прирост, ц методика выполения работы - student2.ru б= методика выполения работы - student2.ru методика выполения работы - student2.ru ц = методика выполения работы - student2.ru
Темп роста, % методика выполения работы - student2.ru методика выполения работы - student2.ru методика выполения работы - student2.ru
Средний темп роста, % методика выполения работы - student2.ru методика выполения работы - student2.ru
Темп прироста, % методика выполения работы - student2.ru = методика выполения работы - student2.ru методика выполения работы - student2.ru
Средний темп прироста, % методика выполения работы - student2.ru методика выполения работы - student2.ru
Абсолютное содержание 1% прироста, ц - методика выполения работы - student2.ru

где У1 – начальный уровень ряда;

Уn – конечный уровень ряда;

Уi – i-ый уровень ряда;

n – число лет, или число уровней ряда;

кi – цепные темпы роста;

m – количество цепных темпов роста.

Тенденция развития или тренд – изменения динамического ряда, определяющие некое общее направление развития, которая пробивает себе дорогу через другие систематические и случайные колебания.

Тренд – это долговременная компонента ряда динамики, характеризующая основную тенденцию его развития.

При изучении в рядах динамики основной тенденции развития явления во времени применяются различные приемы и методы. Методы выравнивания (сглаживания) разделяются на две основные группы:

1) механическое выравнивание отдельных членов ряда динамики с использованием фактических значений соседних уровней;

2) аналитическое выравнивание с применением кривой, проведенной между конкретными уровнями таким образом, чтобы она отображала тенденцию, присущую ряду, и одновременно освободила его от незначительных колебаний.

Механическое выравниваниепроводится методом укрупнения интервалов и методом скользящей средней.

Метод укрупнения интервалов основан на укрупнении периодов времени, к которым относятся уровни ряда, так как в силу влияния различных факторов, в рядах динамики наблюдаются снижение и повышение уровней, которые мешают видеть основную тенденцию развития изучаемого явления.

Метод скользящей средней состоит в укрупнении периодов, образованных последовательным исключением начального уровня ряда и замены его очередным. Например, если выравнивание проводится по трем членам ряда, то новый будет:

Х1 = Х1+Х2+Х3 / 3 Х2 = Х2+Х3+Х4 / 3 и т.д.

Метод плавного уровня заключается в выравнивании ряда динамики двумя способами:

1. По среднему абсолютному приросту:

методика выполения работы - student2.ru = У0 + методика выполения работы - student2.ru t,

где методика выполения работы - student2.ru - выравненное (расчетное) значение анализируемого фактора;

У0 – начальный уровень ряда динамики;

методика выполения работы - student2.ru - средний абсолютный прирост;

t - порядковый номер года.

2. По среднему коэффициенту роста:

методика выполения работы - student2.ru = У0 * к t

где к – средний коэффициент роста.

Аналитическое выравниваниеосновано на том, что уровни ряда динамики выражаются в виде функции времени. Функцию выбирают таким образом, чтобы она давала содержательное объяснение изучаемого процесса.

При выравнивании обычно используются следующие зависимости: линейная, параболическая, гиперболическая, экспоненциальная.

Оценка параметров уравнения осуществляется в большинстве случаев с использованием метода наименьших квадратов, который обеспечивает наименьшую сумму квадратов отклонений фактических уровней от выравненных: (У – Уt) ----> min

Для проявления тенденции динамики можно использовать уравнение прямой:

методика выполения работы - student2.ru ,

где - методика выполения работы - student2.ru - выравненное значение анализируемого фактора,

a, b – неизвестные параметры;

a – значение выравненной урожайности для центрального в динамическом ряду года, содержательной интерпретации не имеет;

b – ежегодный прирост (снижение) урожайности;

t – значения дат.

Для определения неизвестных параметров a и b в соответствии с требованием способа наименьших квадратов необходимо решить систему нормальных уравнений:

методика выполения работы - student2.ru
Система упрощается, если воспользоваться способом отсчета времени от условного начала.

Поскольку методика выполения работы - student2.ru , то система уравнений принимает вид:

методика выполения работы - student2.ru , тогда методика выполения работы - student2.ru , методика выполения работы - student2.ru .

При правильном выборе уравнения сумма фактических значений урожайности методика выполения работы - student2.ru должна максимально приближаться к сумме расчетных значений урожайности методика выполения работы - student2.ru .

Для отбора функции в качестве тренда можно использовать способ сравнения остаточных дисперсий по различным функциям по критерию F Фишера. При сравнении фактического и табличного значения критерия Фишера с учетом степеней свободы делается вывод о предпочтении какому-либо способу выравнивания.

Также отобрать функцию в качестве тренда можно с помощью минимального значения остаточного среднеквадратического отклонения или коэффициента колеблемости.

Для выполнения прогноза следует по выбранной функции получить прогнозные оценки: точечные прогнозы и доверительные интервалы прогноза.

Границы тренда имеют вид: методика выполения работы - student2.ru ,

где Ук – точечный прогноз на к- период;

методика выполения работы - student2.ru - доверительные интервалы прогноза.

Величина доверительного интервала определяется:

методика выполения работы - student2.ru ,

где методика выполения работы - student2.ru - ошибка прогноза.

Для прямолинейного тренда ошибка прогноза находится по формуле:

методика выполения работы - student2.ru ;

для параболы: методика выполения работы - student2.ru ,

где ta - табличное значение t - критерия Стьюдента при уровне значимости a (находится по таблице с учетом степеней свободы v = п- р);

tk – номер прогнозируемого периода;

методика выполения работы - student2.ru - среднее квадратическое отклонение от тренда;

п - число уровней ряда;

р - число параметров уравнения тренда.

МЕТОДИКА ВЫПОЛЕНИЯ РАБОТЫ

Пример:На основе данных о потреблении овощей на душу населения Республики Башкортостан в динамике за 2003 – 2011 годы выявить основную тенденцию развития исследуемого показателя и выполнить прогноз на 2012 и 2013 годы.

Наши рекомендации