Выбор типа линейного кода
Под кодированием понимается процесс преобразования дискретных по уровню и по времени сигналов в сигнал, удобный для передачи по цифровому каналу связи [3, стр. 402]:. Процесс кодирования предполагает две ступени: 1) преобразование дискретного отсчета в число, записанное в какой-либо системе счисления; 2) преобразование числа в форму эквивалентной комбинации электрических сигналов.
Для эффективной передачи цифровой информации по линии связи оцифрованный речевой сигнал преобразуется в код передачи, который определяет форму линейного сигнала передаваемого по линии связи.
Приведенные выше требования к линейным кодам в некотором аспекте являются взаимоисключающими и зависят от различных факторов. Только конкретные условия и состояния работы ВОСП определяют предпочтительность выбора одного из рассмотренных кодов.
При рассмотрении структуры линейного кода легко заметить, что осуществить выделение ТЧ тем проще, чем больше число переходов уровня в цифровом сигнале, т. е. чем больше переходов «10» или «01», при которых синусоидальное колебание тактовой частоты легко «вписывается» в структуру кода. Если же в коде имеются длинные последовательности со значительным преобладанием одинаковых символов, спектр будет содержать НЧ-составляющие, что затруднит обработку сигнала в приемных устройствах и регенераторах. Такой случай неизбежен при безызбыточном кодировании (NRZ-L, NRZ-S, NRZ-M). Достоинствами этих кодов являются простота, относительная узость спектра и высокая энергетическая эффективность. Однако такие, коды характеризуются такими существенными недостатками, как высокий уровень НЧ-составляющих, невозможность контроля ошибок, отсутствие дискретных составляющих в энергетическом спектре. Поэтому указанные линейные коды применяют редко лишь при небольших расстояниях связи. Для улучшения статистических свойств цифровых сигналов используют скремблирование исходного двоичного сигнала для превращения его в сигнал, близкий к случайному, имеющему биноминальное распределение вероятностей появления любой комбинации (при равновероятном появлении символов «1» и «0»).
Скремблирование осуществляют с помощью устройства, реализующего логическую операцию суммирования по модулю 2 исходной двоичной последовательности и преобразующего случайного сигнала, в качестве которого используются псевдослучайные последовательности (ПСП).
К достоинствам скремблированного сигнала можно отнести: непроизвольное появление серии нулей в линии после скремблирования определяется в соответствии с биноминальным законом вероятности появления одного символа и длинной серии; возможность сквозной передачи скремблированного сигнала по сети связи по любым цифровым трактам, так как исходный двоичный сигнал скремблируется без преобразования в другой вид и выделяется только в приемном оборудовании оконечной станции; стабильность скорости передачи по линии; возможность достаточно точного расчета выделителя тактовой частоты (ВТЧ) регенераторов, поскольку может быть определена вероятность появления любой комбинации в коде; уменьшение влияния статистических параметров исходного сигнала на фазовое дрожание цифрового сигнала.
К существенному недостатку скремблирования относится размножение ошибок при восстановлении сигнала в дескремблере на приемной стороне, что ограничивает область применения данного метода.
Ширина энергетического спектра кода (непрерывная составляющая) и величина дискретных составляющих во многом определяются статистикой исходной двоичной последовательности и формой элементарных импульсов линейного кода.
Блочные коды вида mBnB - это способ преобразования, при котором каждая группа из m символов исходного двоичного сигнала заменяется группой из n символов двоичного линейного сигнала.
Блочные коды класса mBnB находят широкое применение в ВОСП на средних и высоких скоростях (третья и четвертая ступени иерархии ЦСП).
К недостаткам блочных кодов можно отнести сложность кодека, так как для их построения требуется блок памяти, что ограничивает их применение на высоких скоростях передачи. Кроме сложности построения схем кодека блочных кодов увеличение т приводит к задержкам в передаче и заметно усложняет кодирующие устройства.
Увеличение избыточности в кодах mBnB путем введения дополнительных символов позволяет использовать комбинации постоянной дискретностью и получить более простые алгоритмы кодирования, т.е. кодер имеет единственное состояние в конце каждого блока. Однако при этом увеличивается тактовая частота, и ухудшаются условия контроля ошибок в регенераторе.
Согласно технической документации, в аппаратуре НАТЕКС FlexGain A2500 применяется код NRZ.
6.2. Выбор типа кабеля
Для магистральной связи рекомендуется использование кабеля ОКЛ с одномодовыми волокнами, обеспечивающими на волне 1,55 мкм большие дальности связи и число каналов. Кабели содержат 4, 8, 16 одномодовых ОВ с градиентным показателем преломления и коэффициентом затухания 0,2…0,3 дБ/км [1, стр. 27].
Рис. 5. Конструкция кабеля ОКЛ