Построение доверительных интервалов

Конечной целью моделирования является оценка или прогнозирование показателя Y в зависимости от значений X.

Прогноз подразделяется на точечный и интервальный и обычно осуществляется не более чем на одну треть размаха:

Построение доверительных интервалов - student2.ru ,

где Построение доверительных интервалов - student2.ru - точка прогноза.

В точечном прогнозе показателя Y для Построение доверительных интервалов - student2.ru определяется лишь одно число, которое представляет условное среднее и (при выполнении предпосылок регрессионного анализа) наиболее вероятное значение с точки зрения закономерности, отраженной в модели. В таком прогнозе не учитываются отклонения от закономерностей в результате воздействия случайных и неучтенных факторов.

В интервальном прогнозе отклонения от закономерностей в результате случайных воздействий определяются границами доверительных интервалов.

Доверительным интервалом называется такой интервал, которому с заданной степенью вероятности (называемой доверительной) принадлежат истинные значения показателя при условии, что закономерности, отраженные в модели, не противоречат развитию как на участке наблюдения, так и на участке оценки (или в периоде упреждения прогноза).

Случайные отклонения от модели проявляются в виде ошибок. Поэтому при определении границ, доверительных интервалов необходимо определить из чего складываются возможные ошибки моделирования, оценки и прогнозирования. При условии, что модель адекватна, и возможные ошибки носят случайный характер, следует различать два основных источника ошибок:

1. ошибки аппроксимации (рассеяние наблюдений относительно модели);

2. ошибки оценок параметров модели.

Наличие ошибок первого типа очевидно даже визуально. Величина ошибок аппроксимации характеризуется остаточной дисперсией Построение доверительных интервалов - student2.ru или средней квадратической ошибкой Построение доверительных интервалов - student2.ru . Распределение этих ошибок для адекватных моделей – нормально (нормальность ошибок – одно из условий адекватности).

Ошибки оценок параметров модели обусловлены тем, что их параметры, фиксированные в модели как однозначные, в действительности являются случайными величинами, так как они оцениваются на основе фактических данных, в которых присутствует как закономерная, так и случайная составляющие. Средние значения этих оценок при выполнении предпосылок регрессионного анализа соответствует истинным значениям параметров, а их дисперсии зависят от остаточной дисперсии, числа наблюдений и вида модели.

Общее среднее квадратическое отклонение истинных значений от расчетных может быть представлено как:

Построение доверительных интервалов - student2.ru (87)

а в точке прогноза:

Построение доверительных интервалов - student2.ru (88)

Исходя из предпосылки нормального распределения остатков границы доверительных интервалов определяются по формулам:

Построение доверительных интервалов - student2.ru (89)

Анализ выражений (7.51, 7.52) позволяет для моделей парной регрессии сделать вывод, что доверительные интервалы тем шире, чем:

- больше остаточная дисперсия (менее точна модель);

- значение Построение доверительных интервалов - student2.ru больше удалено от среднего значения Построение доверительных интервалов - student2.ru (см. рис. 7.5);

- сложнее форма модели;

- больше заданная доверительная вероятность.

Обобщая полученные результаты, можно сделать вывод, что построенная модель обладает хорошим качеством, т.е. она достаточно точна и адекватна исследуемому процессу по всем перечисленным ранее критериям. Учитывая еще и нормальность ряда остатков можно осуществлять точечный и интервальный прогнозы. В связи с этим табл. 7.5 приведены данные для построения доверительных интервалов.

Массив Построение доверительных интервалов - student2.ru дополнен двумя значениями: Построение доверительных интервалов - student2.ru и Построение доверительных интервалов - student2.ru , которые выделены жирным шрифтом. Значения: Построение доверительных интервалов - student2.ru - ширина доверительного интервала; Построение доверительных интервалов - student2.ru - нижняя граница доверительного интервала; Построение доверительных интервалов - student2.ru - верхняя граница доверительного интервала вычислены по формулам (7.53) с доверительной вероятностью 0,975 и соответствующим ей коэффициентом доверия Стьюдента 2,315. Выбор распределения Стьюдента обусловлен достаточно большим значением относительного показателя асимметрии остатков.

График доверительных интервалов и график их ширины приведены на рис. 7.4 и 7.5.

Построение доверительных интервалов - student2.ru

Рис. 7.4 График доверительных интервалов

Построение доверительных интервалов - student2.ru

Рис. 7.5 График ширины доверительных интервалов

С учетом нормального распределения остатков при среднем значении ВТО фирм равном 1067,43 млн. долл. с вероятностью 0,975 прогнозируемые таможенные платежи в бюджет составят от 27,61 до 31,37 млн. долл., при этом условное среднее (наиболее вероятный объём поступлений) ожидается 29,49 млн. долл

ЛИТЕРАТУРА

1. Андронов А.М., Копытов Е.А., Гринглаз Л.Я. Теория вероятностей и математическая статистика: Учебник для вузов. – СПб: Питер. 2004. – 461 с.: ил. – (серия «Учебник для вузов»).

2. Боровиков В. STATISTICA. Искусство анализа данных на компьютере: Для профессионалов. 2-е изд. (+ CD). – СПб.: Питер. 2003. – 688 с.: ил.

3. Козлов А.Ю., Мхитарян В.С., Шишов В.Ф. Статистический анализ данных в MS EXCEL: Учеб. Пособие.- М.: ИНФРА-М, 2012, - 320 с.- (Высшее образование).

4. Громыко Г.Л. Теория статистики: Практикум. – 3-е изд., доп. и перераб. – М.: ИНФРА – М, 2006. – 205 с. – (Высшее образование).

5. Елисеева И.И., Юзбашев М.М. Общая теория статистики: Учебник/ Под ред. И.И. Елисеевой. – 5-е изд., перераб. и доп. – М.: Финансы и статистика. 2004. – 656 с.: ил.

6. Ефимова М.Р., Петрова Е.В., Румянцев В.Н. Общая теория статистики: Учебник. – 2-е изд., испр. и доп. – М.: ИНФРА – М, 2005. – 416 с. – (Высшее образование).

7. Макарова Н.В., Трофимец В.Я. Статистика в Excel: Учебное пособие. – М.: Финансы и статистика, 2002. – 368 с.: ил.

8. Салманов О.Н. Математическая экономика с применением Mathcad и Ecxel. – СПб.: БХВ – Петербург, 2003. – 464 с.: ил.

9. Скучалина Л.М., Павлова С.А. Статистические методы анализа, моделирования и прогнозирования внешнеторговых потоков на основе данных таможенной статистики: Учеб. пособие. – Люберцы: РИО РТА, 2000. – 67 с.: ил.

10. Сигел, Эндрю. Практическая бизнес-статистка: Пер с англ. – М.: Издательский дом «Вильямс», 2004. – 1056 с.: ил. – Парал. Тит. англ.

Наши рекомендации