Множественный регрессионный анализ
Построение уравнения множественной регрессии начинается с решения вопроса о спецификации модели, который в свою очередь включает 2 круга вопросов: отбор факторов и выбор уравнения регрессии.
Отбор факторов обычно осуществляется в два этапа:
1) теоретический анализ взаимосвязи результата и круга факторов, которые оказывают на него существенное влияние;
2) количественная оценка взаимосвязи факторов с результатом. При линейной форме связи между признаками данный этап сводится к анализу корреляционной матрицы (матрицы парных линейных коэффициентов корреляции):
ry,y ry,x1 ryx2 .... ry,xm
rx1,y rx1,x2 rx2x2 .... rx2,xm
......
rxm,y rxm,x1 rxm,x2 .... rxm,xm
где ry,xj – линейный парный коэффициент корреляции, измеряющий тесноту связи между признаками y и хj j=1;m, m -число факторов.
rxj,xk – линейный парный коэффициент корреляции, измеряющий тесноту связи между признаками хj и хk j,k=1;m.
Факторы, включаемые во множественную регрессию, должны отвечать следующим требованиям:
1. Они должны быть количественно измеримы. Если необходимо включить в модель качественный фактор, не имеющий количественного измерения, то ему нужно придать количественную определенность (например, в модели урожайности качество почвы задается в виде баллов).
2. Каждый фактор должен быть достаточно тесно связан с результатом (т.е. коэффициент парной линейной корреляции между фактором и результатом должен быть существенным).
3. Факторы не должны быть сильно коррелированы друг с другом, тем более находиться в строгой функциональной связи (т.е. они не должны быть интеркоррелированы). Разновидностью интеркоррелированности факторов является мультиколлинеарность - тесная линейная связь между факторами.
Мультиколлинеарность может привести к нежелательным последствиям:
1) оценки параметров становятся ненадежными. Они обнаруживают большие стандартные ошибки. С изменением объема наблюдений оценки меняются (не только по величине, но и по знаку), что делает модель непригодной для анализа и прогнозирования.
2) затрудняется интерпретация параметров множественной регрессии как характеристик действия факторов в «чистом» виде, ибо факторы коррелированны; параметры линейной регрессии теряют экономический смысл;
3) становится невозможным определить изолированное влияние факторов на результативный показатель.
Мультиколлинеарность имеет место, если определитель матрицы межфакторной корреляции близок к нулю:
.
Если же определитель матрицы межфакторной корреляции близок к единице, то мультколлинеарности нет.Существуют различные подходы преодоления сильной межфакторной корреляции. Простейший из них – исключение из модели фактора (или факторов), в наибольшей степени ответственных за мультиколлинеарность при условии, что качество модели при этом пострадает несущественно (а именно, теоретический коэффициент детерминации -R2y(x1...xm) снизится несущественно).
Определение факторов, ответственных за мультиколлинеарность, может быть основано на анализе матрицы межфакторной корреляции. При этом определяют пару признаков-факторов, которые сильнее всего связаны между собой (коэффициент линейной парной корреляции максимален по модулю). Из этой пары в наибольшей степени ответственным за мультиколлинеарность будет тот признак, который теснее связан с другими факторами модели (имеет более высокие по модулю значения коэффициентов парной линейной корреляции).
Еще один способ определения факторов, ответственных за мультиколлинеарность основан на вычислении коэффициентов множественной детерминации (R2xj(x1,...,xj-1,xj+1,...,xm)), показывающего зависимость фактора xj от других факторов модели x1,...,xj-1, xj+1,...,xm. Чем ближе значение коэффициента множественной детерминации к единице, тем больше ответственность за мультиколлинеарность фактора, выступающего в роли зависимой переменной. Сравнивая между собой коэффициенты множественной детерминации для различных факторов можно проранжировать переменные по степени ответственности за мультиколлинеарность.
При выборе формы уравнения множественной регрессии предпочтение отдается линейной функции:
yi=a+b1·x1i+ b2·x2i+...+ bm·xmi+ui
в виду четкой интерпретации параметров.
Данное уравнение регрессии называют уравнением регрессии в естественном (натуральном) масштабе. Коэффициент регрессии bj при факторе хj называют условно-чистым коэффициентом регрессии. Он измеряет среднее по совокупности отклонение признака-результата от его средней величины при отклонении признака-фактора хj на единицу, при условии, что все прочие факторы модели не изменяются (зафиксированы на своих среднихуровнях).
Если не делать предположения о значениях прочих факторов, входящих в модель, то это означало бы, что каждый из них при изменении хj также изменялся бы (так как факторы связаны между собой), и своими изменениями оказывали бы влияние на признак-результат.