Поэтому для нахождения точек экстремума функции 2-х переменных используются достаточные условия экстремума
Х – обл-ть опред-я ф-ции
х1, х2… хn – независ-е переем-е (аргументы)
Z – ф-ция Пример: Z=П х21*х2 (Объем цилиндра)
Рассм-м Z=f(х;у) – ф-цию 2-х перем-х (х1, х2 замен-ся на х,у). Рез-ты по аналогии переносятся на др. ф-ции многих перем-х. Обл-ть опред-я ф-ции 2-х перем-х – вся корд пл-ть (оху) или ее часть. Мн-во знач-й ф-ции 2-х перем-х – поверх-ть в 3х-мерном простр-ве.
Приемы построения графиков: - Рассм-т сечение поверх-ти пл-тями || координатным пл-тям.
Пример: х = х0, зн. пл-ть Х || 0уz у = у0 0хz Вид ф-ции: Z=f(х0,y); Z=f(x,у0)
Например: Z=x2+y2-2y
Z= x2+(y-1)2-1 x=0 Z=(y-1)2-1 y=1 Z= x2-1 Z=0 x2+(y-1)2-1
Парабола окруж-ть(центр(0;1)
1б.Пределы и непрерывность ф-ций двух переменных
Пусть задана Z=f(х;у), тогда А – предел ф-ции в т.(х0,y0), если для любого сколь угодно малого положит. числа E>0 сущ-т полож-е число б>0, что для всех х,у удовл-щих |x-х0|<б; |y-y0|<б выполняется нерав-во |f(x,y)-A|<E
Z=f(х;у) непрерывна в т.(х0,y0), если: - она опред-на в этой т.; - имеет конеч. предел при х, стрем-ся к х0 и у к у0; - этот предел = знач-ю
ф-ции в т.(х0,y0), т.е. limf(х;у)=f(х0,y0)
Если ф-ция непрерывна в кажд. т. мн-ва Х, то она непрерывна в этой области
В.Частные производные первого и второго порядка
Производная первого порядка(которая называется частной) Пусть х, у – приращения независимых переменных х и у в некоторой точке из области Х. Тогда величина, равная z = f(x+ х, y+ у) = f(x,y) называется полным приращением в точке х0,у0.Если переменную х зафиксировать, а переменной у дать приращение у, то получим zу = f(x,y,+ у) – f(x,y). Аналогично определяется частная производная от переменной у, т.е.
z’x = Частную производную функции 2-х переменных находят по тем же правилам, что и для функций одной переменной.
Отличие состоит в том, что при дифференциации функции по переменной х , у считается const, а при дифференцировании по у, х считается const.
Для ф-и 2-х переем-х сущ 4 части произв-х 2 порядка:
1г.Полный дифференциал функции 2-х переменных и его приложения
Пусть z = f(x,y), тогда
dz = - наз полным дифференциалом
Учитывая, что для ф-и f(x,y)=x, f(x,y)=y, df(x,y)=∆x=dx, df(x,y)=∆y=dy, полный диф-л можно записать в виде:
Геометрич смысл.
О. Т. наз max(min) ф-и z = f(x,y), если сущ некот окрест-ть т. такая, что для всех x,y из этой окрест-ти вып-ся нер-во f(x,y)<f (max) или f(x,y)>f (min).
Т.: Если задана точка экс-ма ф-и 2-х переем-х , то знач-е частных произв-х в этой точке = 0, т.е. ,
Точки , в которых частные производные первого порядка называются стационарными или критическими.
Поэтому для нахождения точек экстремума функции 2-х переменных используются достаточные условия экстремума.
Достат усл-е экстр-ма: Пусть функция z = f(x,y) дважды дифференцируема, и стационарная точка,
A = , B = , C = , , тогда
1) , причем max, если A<0, min, если A>0.
2) , экстр-ма в т. нет
3) , треб-ся доп исслед-е
Понятие полного дифф-ла прим-ся в приближ выч-ях знач-й ф-и 2-х переем-х, исп-ся след формула:
Проблемы:
1) выбор точки ; 2) устан-ть вид вычисл-мой ф-и
2.Экстремум функции двух переменных