Числовые характеристики случайных величин

Закон распределения полностью характеризует случайную величину. Однако часто закон распределения неизвестен и приходится пользоваться, так называемыми, числовыми характеристиками случайной величины. К ним относятся:

1.математическое ожидание M;

2.дисперсия D;

3.среднее квадратичное отклонение Числовые характеристики случайных величин - student2.ru .

Математическое ожидание дискретной случайной величины X – это сумма произведений всех ее возможных значений Числовые характеристики случайных величин - student2.ru на их вероятности Числовые характеристики случайных величин - student2.ru .

Числовые характеристики случайных величин - student2.ru

Математическое ожидание непрерывной случайной величины X, возможные значения которой принадлежат отрезку [a,b] – это определенный интеграл

Числовые характеристики случайных величин - student2.ru

Математическое ожидание случайной величины (как дискретной, так и непрерывной) есть неслучайная (постоянная) величина. Она характеризует среднее значение случайной величины.

Свойства математического ожидания:

1.M(C)=C – математическое ожидание константы равно самой константе

2. Числовые характеристики случайных величин - student2.ru

3. Числовые характеристики случайных величин - student2.ru

4.M(X+Y)=M(X)+M(Y)

Дисперсия и среднее квадратичное отклонение – это числовые характеристики случайной величины, которые позволяют оценить, как рассеяны возможные значения случайной величины вокруг ее математического ожидания.

Отклонением называют разность между значением случайной величины и ее математическим ожиданием, т. е. Числовые характеристики случайных величин - student2.ru

Пусть закон распределения дискретной случайной величины известен:

Так как одни возможные отклонения положительны, а другие отрицательны, то математическое ожидание отклонения обладает важным свойством:

M(X – M(X))=0, т.е. математическое ожидание отклонения всегда равно нулю.

Поэтому для оценки рассеяния случайной величины вокруг ее математического ожидания вычисляют квадрат отклонения случайной величины.

Дисперсией (рассеянием) случайной величины (как дискретной, так и непрерывной) называют математическое ожидание квадрата отклонения случайной величины от ее математического ожидания.

Для дискретной случайной величины: D(X) = M(х – M(X))2

Для вычисления дисперсии часто бывает удобно пользоваться следующей формулой: D(X)=M(X2)–(M(X))2, т. е. дисперсия равна разности между математическим ожиданием квадрата случайной величины и квадратом ее математического ожидания.

Для непрерывной случайной величины:

Числовые характеристики случайных величин - student2.ru

В последнем выражении все возможные значения случайной величины принадлежат отрезку (a, b).

Дисперсия случайной величины (как дискретной, так и случайной) есть неслучайная величина (постоянная величина).

Свойства дисперсии:

1. D (C) = 0

2. D (CX) = С2 D (X)

3. D (X+Y) = D (X) + D (Y),

4. D (C+X) = D (X),

5. D (X-Y) = D (X) – D (Y).

Пример:

Дискретная случайная величина задана законом распределения:

X 1 2 5

P 0,3 0,5 0,2

Математическое ожидание этой случайной величины равно:

Числовые характеристики случайных величин - student2.ru

Закон распределения квадрата случайной величины, т. е. X2:

X2 1 4 25

P 0,3 0,5 0,2

Математическое ожидание X2 равно:

Числовые характеристики случайных величин - student2.ru

Тогда дисперсия приведенной случайной величины равна:

Числовые характеристики случайных величин - student2.ru

Среднее квадратичное отклонение:

Числовые характеристики случайных величин - student2.ru .

Свойство среднеквадратичного отклонения:

Числовые характеристики случайных величин - student2.ru

Рассмотрим пример, если задана непрерывная случайная величина.

Пусть непрерывная случайная величина задана интегральной функцией распределения:

Числовые характеристики случайных величин - student2.ru

Найдем дифференциальную функцию распределения:

Числовые характеристики случайных величин - student2.ru

Математическое ожидание X и X2:

Числовые характеристики случайных величин - student2.ru

Тогда:

Числовые характеристики случайных величин - student2.ru

Если равномерно распределенная случайная величина задана в интервале [a,b], то ее математическое ожидание, дисперсия и среднее квадратичное отклонение равны:

Числовые характеристики случайных величин - student2.ru

Наши рекомендации