Определителем (детерминантом) квадратной матрицы n-го порядка называется число

Николаев В.С.

«МАТЕМАТИКА»

Москва 2009

Содержание

Введение………………………………………………………………………..
Тема 1 Операции над векторами и матрицами ..............................................
Тестовые задания по теме 1. …………………………………………………
Тема 2 Системы линейных алгебраических уравнений ……………………
Тестовые задания по теме 2. …………………………………………………
Заключение …………………………………………………………………...
Литература ……………………………………………………………………

http://www.gaudeamus.omskcity.com/PDF_library_economic_5.html

(электронная библиотека по ЭММ)

ВВЕДЕНИЕ

В учебном пособии представлен краткий курс высший математики, который будет полезен студентам, не математического профиля (ЕН Ф.01). В пособии изложены основные понятия, формулы и методы высшей математики, представлены решения типичных задач, предложены задачи и тестовые задания для самостоятельной работы и проверки своих знаний, которые будет полезны и при сдаче зачетов и экзаменов, а также представлены варианты для контрольных работ.

Учебное пособие написано в соответствии с требованиями государственных стандартов высшего образования по высшей математике для экономических специальностей. В программу высшей математики входят линейная алгебра с элементами аналитической геометрии, дифференциальное и интегральное исчисления, ряды, дифференциальные уравнения, теория вероятностей и математическая статистика и экономико-математические модели.

Во все темы учебного пособия вошли основные понятия, определения, методы расчетов и решения типовых задач. В связи с тем, что экономистам в основном нужно знать приложения высшей математики в экономике, акцент ставится на таких примерах, задачах, моделей, которые имеют интерес с точки зрения экономической науки. Такие задачи есть во всех темах.

Студентам предлагается прочесть теоретическую часть каждой темы, обращая внимание на определения, свойства, описание методов расчета, решения задач и попытаться самостоятельно решить представленные в соответствующем параграфе задачи.

Тема №1 Операции над векторами и матрицами

§1.1 Матрицы

Любая статистическая таблица это пример матрицы. Таковой является, например следующая таблица:

Производство деталей за смену

Детали, шт. Бригады
I II
А
Б
В

Совокупность m·n чисел, расположенных в виде прямоугольной таблицы из m строк и n столбцов, называется прямоугольной матрицей размерности m ´ n.

þ Обозначения: Матрицы обозначаются прописными латинскими буквами A, B, C; элементы матрицы обозначаются строчными латинскими буквами, например, aij, i = 1,2,…m; j = 1,2,…n, где i показывает номер строки, j - номер столбца матрицы. Другими словами элемент матрицы aij - это элемент, находящийся на пересечении i–ой строки и j–ого столбца матрицы.

Общий вид прямоугольной матрицы записывается как

Определителем (детерминантом) квадратной матрицы n-го порядка называется число - student2.ru .

Матрица называется квадратной матрицей порядка n, если число строк m равно числу столбцов n.

При m = 1 матрица содержит одну строку и называется вектором-строкой. При n = 1 матрица содержит один столбец и называется вектором-столбцом. Элементы вектора называются также компонентами или координатами вектора.

Если все элементы прямоугольной матрицы нули (aij = 0), то матрица называется нулевой матрицей и обозначается буквой 0.

Если в квадратной матрице элементы главной диагонали равны единице (aii = 1), а все остальные элементы – нули (aij = 0, i¹j), то матрица называется единичной матрицей и обозначается как E.

Матрицы A и B равны, если равны все соответствующие элементы этих матриц aij = bij.

§1.2 Операции над матрицами

1. Сумма двух матриц. При сложении двух матриц A и B получается матрица C = A + B, элементы которой определяются как сумму соответствующих элементов этих матриц: cij = aij + bij. Из этого правила следует, что можно сложить только матрицы одинаковой размерности или одинакового порядка.

2. Умножение матрицы на действительное число. При умножении матрицы A на действительное число k получается матрица B = kA, элементы которой определяются умножением всех элементов матрицы B на это число: bij = kaij.

3. Умножение двух матриц. При умножении матриц A и B получается матрица C = A×B, элементы которой определяются по правилу Определителем (детерминантом) квадратной матрицы n-го порядка называется число - student2.ru ; элемент i-й строки и j-го столбца матрицы C равен сумме произведений i-й строки матрицы A на соответствующие элементы j-го столбца матрицы B. Матрицу А можно умножить на матрицу В только в том случае, когда число столбцов матрицы А равно числу строк матрицы В. Если матрицы A и B квадратные матрицы n–го порядка, то имеет смысл как произведение матриц A×B, так и произведение матриц B×A, причем полученные матрицы тоже n–го порядка. При этом в общем случае A×B ¹ B×A, т.е. произведение матриц не коммутативно.

@ Задача 1. Найти сумму матриц Определителем (детерминантом) квадратной матрицы n-го порядка называется число - student2.ru и Определителем (детерминантом) квадратной матрицы n-го порядка называется число - student2.ru .

Решение: При сложении двух матриц суммируются все соответствующие элементы этих матриц:

Определителем (детерминантом) квадратной матрицы n-го порядка называется число - student2.ru Определителем (детерминантом) квадратной матрицы n-го порядка называется число - student2.ru Определителем (детерминантом) квадратной матрицы n-го порядка называется число - student2.ru .

@ Задача 2. Найти произведение числа 4 и матрицы Определителем (детерминантом) квадратной матрицы n-го порядка называется число - student2.ru .

Решение: При умножении матрицы на число все элементы матрицы умножаются на это число:

Определителем (детерминантом) квадратной матрицы n-го порядка называется число - student2.ru .

@ Задача 3. Найти произведение матриц Определителем (детерминантом) квадратной матрицы n-го порядка называется число - student2.ru и Определителем (детерминантом) квадратной матрицы n-го порядка называется число - student2.ru .

Решение: Элементы матрицы A×B определяются сложением произведений элементов первой строки матрицы А с соответствующими элементами первого столбца матрицы В, произведений элементов первой строки матрицы А с соответствующими элементами второго столбца матрицы В и т.д.:

Определителем (детерминантом) квадратной матрицы n-го порядка называется число - student2.ru .

@ Задача 4. Найти произведение матриц Определителем (детерминантом) квадратной матрицы n-го порядка называется число - student2.ru и Определителем (детерминантом) квадратной матрицы n-го порядка называется число - student2.ru .

Решение: Элементы полученной матрицы представляют собой суммы произведений элементов строк матрицы А с элементами единственного столбца матрицы В:

Определителем (детерминантом) квадратной матрицы n-го порядка называется число - student2.ru .

Свойства матриц

Если A, B и C матрицы, а k и m действительные числа, то выполняются следующие свойства.

1. Сумма матриц обладает свойством коммутативности: A + B = B + A.

2. Сумма трех матриц обладает свойством ассоциативности: (A + B) + C = A + (B + C).

3. Сумма матрицы A и нулевой матрицы 0 равна матрице A: A + 0 = A.

4. Сумма матрицы A и противоположной матрицы – A равна нулевой матрице 0: A – A = 0.

5. Произведение матрицы A и единичной матрицы E равно матрице A: EA = AE = A. При этом выполняется свойство коммутативности.

6. Сумма матриц обладает свойством дистрибутивности относительно действительного множителя (числа): k(A + B) = kA + kB

7. Произведение матрицы с двумя действительными множителями обладает свойством ассоциативности: k(mA) = (km)A.

8. Произведение матриц обладает свойством ассоциативности относительно действительного множителя: k(AB) = (kA)B.

9. Произведение трех матриц обладает свойством дистрибутивности: (AB)C = A(BC), A(B + C) = AB + AC, (A + B)C = AC + BC.

§1.3. Определители и их свойства

Определители

Определителем (детерминантом) квадратной матрицы n-го порядка называется число

Определителем (детерминантом) квадратной матрицы n-го порядка называется число - student2.ru .

þ Обозначения: detA, D и |A|.

Строки и столбцы определителя называются рядами.

Определитель второго порядка вычисляется по правилу (1):

Определителем (детерминантом) квадратной матрицы n-го порядка называется число - student2.ru . (1)

Определитель третьего порядка вычисляется по правилу (2):

Определителем (детерминантом) квадратной матрицы n-го порядка называется число - student2.ru (2).

Правило вычисления определителя третьего порядка следующее. Это алгебраическая сумма шести тройных произведений элементов, стоящих в разных строках и разных столбцах. Со знаком плюс берутся произведения, сомножители которых находятся на главной диагонали и в вершинах треугольников с основаниями, параллельными главной диагонали. Со знаком минус берутся произведения, сомножители которых стоят на другой диагонали и в вершинах треугольников с основаниями, параллельными этой диагонали (рис. 1).

Определителем (детерминантом) квадратной матрицы n-го порядка называется число - student2.ru Определителем (детерминантом) квадратной матрицы n-го порядка называется число - student2.ru Определителем (детерминантом) квадратной матрицы n-го порядка называется число - student2.ru Определителем (детерминантом) квадратной матрицы n-го порядка называется число - student2.ru Определителем (детерминантом) квадратной матрицы n-го порядка называется число - student2.ru Определителем (детерминантом) квадратной матрицы n-го порядка называется число - student2.ru Определителем (детерминантом) квадратной матрицы n-го порядка называется число - student2.ru Определителем (детерминантом) квадратной матрицы n-го порядка называется число - student2.ru Определителем (детерминантом) квадратной матрицы n-го порядка называется число - student2.ru Определителем (детерминантом) квадратной матрицы n-го порядка называется число - student2.ru Определителем (детерминантом) квадратной матрицы n-го порядка называется число - student2.ru Определителем (детерминантом) квадратной матрицы n-го порядка называется число - student2.ru Определителем (детерминантом) квадратной матрицы n-го порядка называется число - student2.ru Определителем (детерминантом) квадратной матрицы n-го порядка называется число - student2.ru Определителем (детерминантом) квадратной матрицы n-го порядка называется число - student2.ru Определителем (детерминантом) квадратной матрицы n-го порядка называется число - student2.ru Определителем (детерминантом) квадратной матрицы n-го порядка называется число - student2.ru Определителем (детерминантом) квадратной матрицы n-го порядка называется число - student2.ru Определителем (детерминантом) квадратной матрицы n-го порядка называется число - student2.ru Определителем (детерминантом) квадратной матрицы n-го порядка называется число - student2.ru Определителем (детерминантом) квадратной матрицы n-го порядка называется число - student2.ru Определителем (детерминантом) квадратной матрицы n-го порядка называется число - student2.ru Определителем (детерминантом) квадратной матрицы n-го порядка называется число - student2.ru Определителем (детерминантом) квадратной матрицы n-го порядка называется число - student2.ru Определителем (детерминантом) квадратной матрицы n-го порядка называется число - student2.ru Определителем (детерминантом) квадратной матрицы n-го порядка называется число - student2.ru Определителем (детерминантом) квадратной матрицы n-го порядка называется число - student2.ru Определителем (детерминантом) квадратной матрицы n-го порядка называется число - student2.ru Определителем (детерминантом) квадратной матрицы n-го порядка называется число - student2.ru Определителем (детерминантом) квадратной матрицы n-го порядка называется число - student2.ru Определителем (детерминантом) квадратной матрицы n-го порядка называется число - student2.ru Определителем (детерминантом) квадратной матрицы n-го порядка называется число - student2.ru Определителем (детерминантом) квадратной матрицы n-го порядка называется число - student2.ru

(+) (-)

Рис. 1. Правило вычисления определителя третьего порядка

@ Задача 1. Найти Определителем (детерминантом) квадратной матрицы n-го порядка называется число - student2.ru .

Решение: Определитель второго порядка вычисляется по правилу (1): detA = 2·3 – (–3)·4=18.

@ Задача 2. Найти Определителем (детерминантом) квадратной матрицы n-го порядка называется число - student2.ru .

Решение: Определитель третьего порядка вычисляется по правилу (2):

detA = 1·3·2 + 2·1·0 + 3·2·1 – 3·3·0 – 2·2·2 – 1·1·1 = 3.

Наши рекомендации