Что нужно учитывать при проектировании каменных перемычек?

В. В. Габрусенко,

Общество железобетонщиков Сибири и Урала, Новосибирск

АВАРИИ, ДЕФЕКТЫ И УСИЛЕНИЕ ЖЕЛЕЗОБЕТОННЫХ И КАМЕННЫХ КОНСТРУКЦИЙ*

Предисловие

Статистика советского времени показывала, что более тре­ти аварий в строительстве происходило по вине строителей и монтажников. С большим отрывом от них вторыми шли эксп­луатационники, затем работники стройиндустрии (поставщики материалов и изделий), затем проектировщики. Хотя подоб­ная статистика "демократической" эпохи отсутствует (во вся­ком случае, не опубликована), можно с уверенностью сказать, что проектировщики сегодня вошли в "призовую тройку", оттеснив на 4-е место работников стройиндустрии. Впрочем, "заслуга" здесь не только самих проектировщиков (хотя и про­ектировщиков тоже), но и обстоятельств: в последнее время, по существу, прекратился выпуск сложнейших сборных желе­зобетонных конструкций — большепролетных балок и ферм, тонкостенных оболочек, конструкций «на пролет» и тому по­добных изделий, которые наиболее чутко реагируют на нару­шение технологической дисциплины.

Предлагаемый читателю цикл небольших статей, изложен­ных в форме вопросов и ответов, затрагивает только ошибки строителей и проектировщиков, обходя вниманием эксплуата­ционников. Сделано это потому, что и первые, и вторые неус­танны в своем "творческом поиске", в то время как третьи допускают, обычно, всего две, ставшие уже рутинными ошиб­ки: перегрузку и увлажнение строительных конструкций. При­чем эти ошибки зачастую спровоцированы их предшественни­ками — либо порочной конструкцией кровли, либо отсутствием водоотвода при обратном уклоне дневной поверхности, либо недостаточной прочностью конструкционных материалов, либо скрытым браком строителей и т. д.

Хотелось бы еще отметить следующее. Аварии и катастро­фы в строительстве редко возникают в силу какой-то одной причины. Как правило, в одном месте и в одно время собира­ется сразу несколько роковых обстоятельств. Не будь хотя бы одного из них — здание, возможно бы, устояло, и люди оста­лись бы живы. Это показывает и печальный отечественный опыт, и в намного большей степени — опыт зарубежья, особенно "цивилизованного" Запада, где аварии в строительстве с тяже­лыми последствиями происходят куда чаще, чем у нас.

Весь публикуемый материал состоит из нескольких глав: две первых посвящены каркасным и бескаркасным зданиям, еще две — непосредственно железобетонным и каменным кон­структивным элементам, а завершают цикл статьи, посвящен­ные диагностике повреждений и принципам усиления конст­рукций и зданий.

Каркасные здания

1.1. Как обеспечивается про­странственная жёсткость каркас­ных зданий?

Пространственная жесткость — это, прежде всего, геометрическая неизменяемость в трех плоскостях: горизонтальной и двух вертикальных. Обеспечивается она формировани­ем геометрически неизменяемых фигур в каждой плоскости (рис. 1) — преимущественно треугольниками при шарнирном соединении стерж­ней (а) и прямоугольниками при жестком (б) или смешанном (в) со­единении. Хотя под воздействием нагрузки эти фигуры несколько и меняют свою форму, но меняют, во-первых, только на время действия нагрузки и, во-вторых, только за счет деформаций составляющих стерж­ней.

Что нужно учитывать при проектировании каменных перемычек? - student2.ru

В одноэтажных зданиях верти­кальная жесткость обеспечивается, как правило, плоскими рамами с жесткой заделкой колонн в фунда­ментах (и с дополнительной уста­новкой, при необходимости, сталь­ных вертикальных связей, образую­щих треугольники), а горизонталь­ная — жестким диском покрытия.

В многоэтажных зданиях горизон­тальная жесткость обеспечивается жесткими дисками перекрытий и покрытия, а вертикальная — жест­костью плоских рам (рамные карка­сы), жесткостью вертикальных свя­зей или диафрагм (связевые карка­сы) или комбинацией того и другого (рамно-связевые каркасы).

Большинство обрушений зданий (если не считать катастроф, вызван­ных стихийными бедствиями и тех­ногенными причинами) происходило и происходит из-за необеспеченно­сти их пространственной жесткос­ти. В частности, в одних зданиях не было создано достаточно жесткое защемление колонн в фундаментах, в других не была предусмотрена установка дополнительных верти­кальных связей, в-третьих были не­качественно приварены плиты по­крытия, в четвертых "на потом" была отложена приварка верхних заклад­ных деталей ригелей и т. д.

1.2. Что произойдет, если за­зоры между сборной колонной и стаканным фундаментом некаче­ственно заделать бетоном?

Расчетными схемами большин­ства типов каркасных зданий пре­дусматривается жесткое защемле­ние колонн в фундаментах (рис. 2, а). При использовании сборных желе­зобетонных элементов такое защем­ление обеспечивается за счет тща­тельной заделки бетоном зазоров между колонной и стаканом фунда­мента, причем класс монолитного бетона должен быть не ниже клас­са бетона фундамента.

В практике строительства, увы, нередки случаи, когда после рих­товки и временного закрепления колонн бетонирование зазоров осу­ществляется не сразу. За это время в зазоры попадает мусор и грязь, которые сверху лишь замазывают бетоном. При этом проверить каче­ство работ по одному внешнему виду не представляется возможным. Такое соединение становится подат­ливым, т. е. занимает промежуточ­ное положение между жестким и шарнирным соединениями (его ус­ловная схема показана на рис. 2, б). Оно приводит к большим измене­ниям в работе каркаса по сравне­нию с тем, что предусмотрено в проекте: резкому увеличению гори­зонтальных перемещений А и уси­лий в колоннах, снижению устойчи­вости колонн, а в худшем случае — к обрушению здания. Этот дефект является одной из причин появле­ния трещин в стенах и колоннах, разрушения узлов сопряжения сте­новых панелей с колоннами и одной из главных причин систематического выхода из строя ("разбалтывания") путей мостовых и подвесных кранов. Поэтому качество и своевременность заделки зазоров должны подвергаться особо тщательному контролю.

Что нужно учитывать при проектировании каменных перемычек? - student2.ru

1.3. Что произойдет, если опорные закладные детали стропильных балок (ферм) некачественно приварить к закладным деталям колонн?

Сварные швы нужны не просто для фиксации положения балок и ферм (как ошибочно полагают де которые строители), а для восприятия весьма больших усилий скалывания и отрыва.

В частности, швы обеспечивают шарнирно-неподвижное опирание стропильных конструкций (ригелей на колонны, благодаря которым горизонтальные нагрузки (ветровая или крановые) передаются от одной колонны к другой и распределяются между ними пропорционно жесткостям (рис. 3, а). При некачественной сварке может произойти разрушение швов, тогда опора становится шарнирно-подвижной и вся горизонтальная нагрузка воспри­нимается только одной колонной, на которую последняя не рассчитана (рис. 3, б). В совокупности с другими дефектами это может привести к разрушению перегруженной колон­ны и, как минимум, - к образова­нию в ней больших поперечных тре­щин, к постоянному выходу из строя крановых путей, образованию тре­щин в стенах и т.п. В значительной степени приведенные рассуждения относятся и к ригелям многоэтаж­ных каркасных зданий.

Кроме того, в тех случаях, когда не предусмотрены вертикальные свя­зи по торцам стропильных конструк­ций, сварные швы удерживают пос­ледние от опрокидывания при воз­действии горизонтальных усилий продольного направления (рис. 3,в, вид с торца балки).

Что нужно учитывать при проектировании каменных перемычек? - student2.ru

1.4. Что произойдет, если при монтаже ребристых плит покрытия (перекрытия) приварить не три, а две опорные закладные дета­ли?

Приварка каждой плиты в трех точках образует геометрически не­изменяемую фигуру - треугольник, а в совокупности - жесткий диск покрытия (перекрытия), который вов­лекает в совместную работу при действии горизонтальных сил Т все колонны (рис. 4, а, вид в плане). Ра­бота каждой плиты в горизонталь­ной плоскости напоминает работу консоли, воспринимающей часть силы Т (рис. 4, б). Если приваривать только две закладные детали, то каждая плита в горизонтальной плоскости может свободно поворачиваться (рис. 4, в), жесткого диска не бу­дет и сила Т станет восприниматься колоннами только одной плоской рамы (рис. 4, г). В результате, усилия в этих колоннах резко возрастут по сравнению с расчетными (если в расчете учитывалась пространственная работа каркаса), что может привести не только к появлению больших трещин, но и к разрушению колонн. Даже если этого не произойдет, отсутствие жесткого дис­ка, пусть и на отдельных участках, приведет к преждевременному из­носу колонн, разрушению кровли, а в многоэтажных зданиях также к разрушению полов.

В многоэтажных каркасных зда­ниях связевого или рамно-связевого типов жесткие диски перекрытий играют похожую, но несколько иную роль (см. вопрос 1.6).

Что нужно учитывать при проектировании каменных перемычек? - student2.ru

1.5. Что произойдет, если швы между ребристыми плитами по­крытия некачественно заделать раствором?

При некачественной заделке в швах образуются щели, через ко­торые теплый воздух из помещения проникает в утеплитель и, если кров­ля совмещенная (невентилируемая), конденсируется под цементной стяж­кой или под водоизоляционным ков­ром. В результате этого происходит систематическое замачивание утеп­лителя, он теряет свои теплозащит­ные свойства, кровля промерзает, а бетон плит покрытия подвергает­ся морозному разрушению. Кроме того, швы способствуют повышению жесткости диска покрытия за счет сил сцепления между раствором замоноличивания и боковыми повер­хностями плит. Поэтому качествен­ная заделка швов — вовсе не при­хоть проектировщиков.

1.6. Что произойдет, если швы между пустотными плитами пере­крытий некачественно заделать раствором?

На боковых поверхностях пустот­ных плит имеются круглые углубле­ния, которые при заделке швов за­полняются раствором и образуют шпонки, препятствующие взаимно­му смещению плит не только в вер­тикальной, но и в горизонтальной плоскости (рис. 5, а, вид в плане). Благодаря шпонкам, перекрытие представляет собой горизонтальный жёсткий диск, т. е. как бы непре­рывную монолитную плиту. Напри­мер, в связевых каркасах ветровая нагрузка через жесткие диски пе­редается с колонн на вертикальные связи или диафрагмы жесткости (рис. 5, б). Это позволяет резко уменьшить горизонтальные переме­щения колонн Δ1 и освободить их от восприятия горизонтальных нагру­зок, а значит — и больших изгиба­ющих моментов.

К сожалению, некачественная заделка встречается нередко: швы заполняют раствором не на всю глубину, а только в верхней части — по существу, не заделывают швы, а замазывают. При такой "заделке" шпонки отсутствуют, сдвигу плит препятствий нет (если не считать сил трения) и жесткий диск не форми­руется (рис. 5, в). В результате, в колоннах тех рам, где нет верти­кальных связей (диафрагм жесткос­ти), возникают недопустимые дефор­мации (горизонтальные перемеще­ния Δ2) и усилия, чреватые аварий­ными последствиями.

Что нужно учитывать при проектировании каменных перемычек? - student2.ru

1.7. Что произойдет, если в перекрытиях каркасных зданий использовать пустотные плиты не с круглыми, а с полосовыми шпонками?

Первые пустотные плиты, пред­назначенные для перекрытий ка­менных зданий, имели на боковых поверхностях продольные пазы (рис. 6, а). При заполнении пазов раство­ром образовывались полосовые шпонки, способные воспринимать сдвигающие (перерезывающие) силы только вертикального направ­ления. Подобный тип шпонок по­зволял при действии дополнитель­ной местной нагрузки на одну пли­ту — например, перегородок — вов­лекать в совместную работу сосед­ние, перераспределять на них часть нагрузки и, кроме того, сохранять целостность отделки потолка (рис. 6, б).

Однако такие шпонки не в со­стоянии воспринимать сдвигающие силы горизонтального направления, следовательно, жесткость диска пе­рекрытия они не обеспечивают, а это, как видно из предыдущего от­вета, чревато аварийными послед­ствиями. Поэтому в проектах зда­ний всегда следует оговаривать тип боковых поверхностей пустотных плит, тем более что в последнее время на ряде заводов стройиндустрии освоена весьма экономичная (т. н. "экструзионная") технология, которая, однако, позволяет изготав­ливать плиты только с продольными пазами.

Что нужно учитывать при проектировании каменных перемычек? - student2.ru

1.8. К чему может привести не­качественное соединение межколонных плит в связевых каркас­ных зданиях?

Пустотные плиты в перекрытиях работают не только как элементы жесткого диска, но и как распорки между ригелями. Распорки же спо­собны воспринимать в горизонталь­ной плоскости только сжимающие усилия (да и то лишь при тщатель­ной заделке швов между ригелями и торцами плит). Поэтому между ко­лоннами предусматривается уста­новка специальных плит (их иногда называют связевыми). Благодаря сварным соединениям с опорными частями ригелей, они могут надеж­но работать и как распорки, и как растяжки. Их задачи при этом — не только воспринимать вертикальную нагрузку и участвовать в работе жесткого диска перекрытия, но и ограничивать расчетную длину ко­лонн пределами одного этажа. По­нятно, что при некачественном со­единении (слабые сварные швы, по­гнутые соединительные стержни и т. д.) последнюю задачу плиты вы­полнять не смогут, что приведет к резкому увеличению гибкости ко­лонн и соответствующему снижению их несущей способности.

1.9. Что произойдет, если в смежных ригелях рамного карка­са некачественно сварить выпус­ки верхней продольной армату­ры?

В опорных сечениях ригелей рам­ного каркаса возникают большие изгибающие моменты М отрицатель­ного знака (рис. 7, а), которые воспринимаются парой сил — растяги­вающей в верхней рабочей арма­туре и сжимающей (равнодейству­ющей) в сжатом бетоне и в нижней рабочей арматуре. При некаче­ственной сварке растянутая арма­тура выключится из работы, сече­ние не в состоянии будет воспри­нимать опорный момент и узел со­пряжения ригеля с колонной пре­вратится из жесткого в шарнирный. В результате этого резко, в несколь­ко раз, возрастет изгибающий мо­мент в пролете (рис. 7, б), что при­ведет ригель к обрушению, а в слу­чае, если подобный брак допущен многократно, будет также серьезно ослаблена или полностью утрачена поперечная или продольная (в за­висимости от ориентации ригелей) жесткость всего здания.

Что нужно учитывать при проектировании каменных перемычек? - student2.ru

1.10. Что произойдет, если зазоры между сборными ригеля­ми и колоннами рамного карка­са некачественно заделать бе­тоном?

Некачественная заделка — низ­кая прочность или плохое уплотне­ние бетонной смеси — явление, к сожалению, нередкое. Приводит оно к тому, что сжимающее усилие (см. предыдущий ответ), которое пере­дается от ригеля к колонне, моно­литный бетон воспринимать не в состоянии, и всё оно передается через опорную закладную деталь, если таковая предусмотрена конст­рукцией узла. Вследствие этого про­исходит разрушение сварных швов, отрыв закладных деталей, а в итоге - разрушение всего соединения. В сборно-монолитном решении, т.е. при отсутствии опорных закладных деталей, узел из жесткого превра­тится в шарнирный с резким увели­чением изгибающих моментов в пролете.

Что нужно учитывать при проектировании каменных перемычек? - student2.ru

1.11. Для чего нужны “рыбки” в каркасных зданиях серии ИИ-04?

"Рыбки" — это стальные детали, соединяющие верхние грани риге­лей с колоннами в связевых кар­касных зданиях первой, и до сего дня популярной, серии ИИ-04. В про­екте установка диафрагм жесткос­ти (железобетонных перегородок) до­пускалось независимо от монтажа ригелей, что не обеспечивало про­странственную жесткость каркаса. Поэтому были предусмотрены жест­кие соединения ригелей с колон­нами, которые могли воспринимать ограниченные опорные моменты М0 = 55 кН·м (5,5 т·м), достаточные для того, чтобы обеспечить жесткость каркаса на период монтажа. Огра­ничение обеспечивается определен­ным сечением "рыбок" (а также их длиной), металл которых начинает течь при достижении указанного опорного момента. Если сечение увеличить, то опорный момент воз­растет, а пролетный уменьшится, если сечение уменьшить, то, наобо­рот, опорный момент уменьшится, а пролетный возрастет (рис. 8). Ана­логичные результаты — и при изме­нении марки стали по сравнению с проектной. Плохо и то, и другое. В первом случае будут перегружены опорные участки, во втором — про­летные. К сожалению, строители не всегда уделяют этому вопросу дол­жное внимание.

1.12. К чему может привести несоосная установка колонн многоэтажного здания?

При проектировании сжатых же­лезобетонных элементов допускает­ся случайный эксцентриситет, кото­рый учитывает возможность неболь­шого смещения приложения нагруз­ки и неоднородность деформативных свойств бетона. Величины допустимого смещения приведены в со­ответствующих нормах производства работ. Если фактическое смещение оси верхней колонны превышает нормативную величину, в нижней колонне возникает дополнительный изгибающий момент, который вызы­вает ее перегрузку со всеми выте­кающими последствиями, вплоть до разрушения.

1.13. Что может произойти при некачественной сварке выпус­ков арматуры в стыках колонн многоэтажных зданий?

Сварка выпусков арматуры и последующее обетонирование стыков обеспечивает жесткое соедине­ние колонн, превращая их в одну цельную колонну по высоте. При некачественной сварке передача усилий от арматуры верхней колон­ны к арматуре нижней может быть затруднена. Кроме того, может про­изойти разрыв соединения. Тогда жесткий стык превратится в шар­нирный, не способный воспринимать изгибающие моменты, что особен­но опасно для каркасных зданий рамного и рамно-связевого типов.

Бескаркасные здания

2.1. Как обеспечивается про­странственная жесткость камен­ных зданий?

Различают два типа каменных зданий: 1) с упругой конструктив­ной схемой, когда расстояние В между поперечными стенами пре­вышает 24...54 м (в зависимости от группы кладки и конструкций покры­тия или перекрытий), 2) с жесткой конструктивной схемой (при мень­ших значениях В).

К 1-му типу относятся, в основ­ном, здания производственного на­значения, склады, гаражи (если пе­регородки между боксами не свя­заны с продольными стенами), длин­ные залы и т. п. сооружения. В сред­ней части длины таких зданий по­перечные стены не оказывают вли­яния на поперечные деформации Δ продольных стен при действии на­грузок (например, ветровой — см. рис. 9, а, вид в плане). И если про­дольная жесткость обеспечивается жесткостью самих продольных стен, то поперечная — жесткостью попе­речной рамы (рис. 9, б). В роли за­щемленных стоек рамы выступают участки продольных стен — либо пи­лястры с прилегающими участками, либо простенки, либо условно вы­резанные вертикальные полосы про­дольных стен. Ригелями рамы служат фермы, балки или плиты, кото­рые необходимо надежно заанкерить в продольных стенах, иначе не будут созданы шарнирно-неподвижные соединения их со стойками (см. вопрос 1.3).

Что нужно учитывать при проектировании каменных перемычек? - student2.ru

При жестком защемлении про­дольных стен горизонтальной гидро­изоляцией должен быть не рулон­ный материал (рассекая стену по горизонтали, он, по существу, об­разует шарнир и превращает раму в геометрически изменяемую сис­тему), а утолщенный до 20 мм шов из цементного раствора жесткой консистенции марки не ниже 100. Жесткий раствор трудно расстилать, однако он обладает меньшей усадочностью, чем пластичный, поэто­му в нем меньше вероятность об­разования усадочных трещин, что крайне важно для гидроизоляции.

Ко 2-му типу относятся почти все жилые, административно-бытовые и т.п. здания. Их пространственная жесткость обеспечивается продоль­ными и относительно часто распо­ложенными поперечными стенами. В жестких дисках перекрытий или покрытия они не нуждаются, ибо стены, являясь вертикальными жест­кими дисками, жестко связаны меж­ду собой перевязкой швов. То есть, в плане стены образуют прямоуголь­ники с жесткими узлами. Поэтому в таких зданиях вполне допустимо при­менять не круглые, а полосовые шпоночные соединения между пли­тами, т. е. применять пустотные пли­ты с продольными пазами на боко­вых поверхностях (см. вопрос 1.6).

2.2. Как обеспечивается про­странственная жесткость крупнопанельных зданий?

Обеспечивается жесткостью про­дольных и поперечных стен и жест­кими дисками перекрытий. Однако жесткости одних панелей для этого недостаточно, необходимы надеж­ные соединения между ними.

Почти все обрушения панельных зданий в стране происходили вес­ной в период оттаивания раствор­ных и бетонных швов, а сами зда­ния были возведены зимой. Непос­редственной причиной аварий яв­лялось применение раствора (и бе­тона замоноличивания) без противоморозных добавок и утолщение до 40...50 мм горизонтальных швов (платформенных стыков). В ряде слу­чаев, когда монтаж осуществлялся при очень низких температурах, не помогали и противоморозные добав­ки — при оттаивании прочность ра­створа и бетона была близка нулю.

Утолщение и низкая прочность швов вызывали неравномерные вер­тикальные деформации стен. Здания могли бы и устоять, если бы к ука­занному дефекту не добавлялись другие: отсутствие сварки панелей перекрытий со стенами и между собой или отсутствие сварки выпус­ков арматуры в вертикальных сты­ках стеновых панелей, или некаче­ственное бетонирование вертикаль­ных стыков и т. д. В итоге происхо­дила потеря устойчивости положе­ния стеновых панелей — их гори­зонтальное скольжение из плоско­сти (боковое выдавливание), за ко­торым следовало обрушение.

При качественном монтаже круп­нопанельные дома обладают весь­ма высокой пространственной жес­ткостью. Это показал не только дли­тельный опыт обычной эксплуатации, но и состояние зданий после чрез­вычайных воздействий — землетря­сений, взрывов бытового газа и пр.

2.3. Для чего на период отта­ивания зимней кладки устанавли­вают временные стойки под окон­ными и дверными перемычками?

Делается это для того, чтобы раз­грузить простенки, пока раствор не наберет требуемую прочность. Та­кой прием применяют в тех случа­ях, когда кладка ведется методом замораживания, а она имеет проч­ность в несколько раз ниже, чем летняя кладка из кирпича и раство­ра тех же марок. Причиной боль­шинства обрушений кирпичных зда­ний являлась именно перегрузка простенков и их разрушение в пе­риод оттаивания раствора. Поэто­му в проектах всегда должно быть указано, какая высота кладки мето­дом замораживания является пре­дельной, какая марка раствора при этом должна быть применена и ка­кими должны быть временные противоаварийные меры.

Аварийные ситуации могут воз­никнуть и тогда, когда с опоздани­ем применяют раствор с противоморозными добавками. Например, поздней осенью, при чередовании положительных и отрицательных су­точных температур, кладка на тене­вой стороне здания за день не ус­певает оттаивать, обычный раствор, не набрав требуемую прочность, "уходит в зиму" и оттаивает вес­ной, когда нагрузка на стены мно­гократно возросла.

2.4. Что произойдет, если пе­рекрытия не связать со стенами анкерами?

Зачастую полагают, что анкеровка нужна для того, чтобы предотв­ратить выдергивание перекрытий из стен при воздействии случайных неблагоприятных факторов. Авторы такого взгляда путают причину со следствием.

Расчетная схема несущей камен­ной стены многоэтажного здания представляет собой многопролетную вертикально ориентированную бал­ку. Опорами балки служат перекры­тия, но при условии, что стена свя­зана с ними анкерами (рис. 10, а), поэтому правильнее говорить не "анкеровка перекрытий в стенах", а "анкеровка стен в перекрытиях".

Если анкера не установлены хотя бы в одном перекрытии, это озна­чает, что пропущена одна опора, пролет балки и ее гибкость возрос­ли вдвое (рис. 10, б). В результате, стена окажется перегруженной, что чревато аварийными последствиями. Вот почему анкеровке стен в уров­не перекрытий необходимо уделять самое серьезное внимание, памя­туя о том, что исправление подоб­ного дефекта — мероприятие ис­ключительно дорогостоящее как по расходу металла, так и по затратам труда. Следует также помнить и о том, что если со стеной анкером связан один конец плиты или бал­ки, то с противоположной стеной должен быть связан и другой конец. Кроме того, анкера должны распо­лагаться строго перпендикулярно оси стены и не иметь начальных искрив­лений, в противном случае свою задачу они выполнить не смогут.

Что нужно учитывать при проектировании каменных перемычек? - student2.ru

2.5. Что может послужить при­чиной образования трещин в ме­стах сопряжения простенков с по­доконными частями кладки?

Образование подобных трещин некоторые специалисты объясняют температурными напряжениями. Однако чаще всего главной причи­ной служит депланация (искривле­ние) сечений кладки, вызванная неравномерными напряжениями.

В простенках, особенно на пер­вых этажах, нормальные (вертикаль­ные) напряжения σ намного выше, чем в подоконной части кладки, ибо простенки несут нагрузку от всех вышележащих этажей, а подоконные части — только от собственного веса и веса одного окна. В местах рез­кого скачка нормальных напряжений возникают горизонтальные напряже­ния σt, которые приводят к разрыву кладки и образованию вертикаль­ных, иногда наклонных, трещин (рис. 11, а). Формула для определения σ, приведенная в "Пособии по проек­тированию каменных и армокаменных конструкций" (М., 1989), на наш взгляд, несколько недооценивает влияние длительного действия на­грузки и дает заниженную величи­ну горизонтальных напряжений. Сдержать развитие трещин можно, если установить арматуру поперек ожидаемых трещин в верхних рядах кладки подоконной части. При этом следует помнить о том, что армату­ра должна быть надежно заанкерена по обе стороны ожидаемых тре­щин (рис. 11, б).

Что нужно учитывать при проектировании каменных перемычек? - student2.ru

2.6. Что может послужить при­чинами образования трещин в ме­стах сопряжения продольных и по­перечных стен?

Причин, как правило, две — каж­дая по отдельности или обе вместе. Первая — уже упомянутая деплана­ция горизонтальных сечений камен­ной кладки (см. предыдущий ответ), когда одна стена, например продоль­ная, является несущей, а перпенди­кулярная ей — самонесущей (рис. 12). В несущей стене нормальные напряжения намного выше, чем в самонесущей, следовательно, вели­ка и разность вертикальных дефор­маций стен (деформаций укороче­ния). Однако в работе стен имеет­ся одна особенность, которую рас­четные формулы не учитывают, а именно: разность нормальных напря­жений достигает максимума на ниж­нем этаже, а разность абсолютных (суммарных) деформаций — на вер­хнем. Именно в верхней части и начинают образовываться трещины, которые с годами растут в длину и иногда пересекают несколько эта­жей. Понятно, что ограничить длину и ширину раскрытия трещин мож­но с помощью армирования горизонтальных рядов кладки, в первую очередь — в уровне перекрытий са­мых верхних этажей.

Вторая причина — "зависание" несущих стен на самонесущих. Про­исходит это тогда, когда проектиров­щик поленился подсчитать размеры фундаментов под самонесущие сте­ны и назначил ширину подошвы ленточного фундамента на глазок с запасом (такую же или чуть мень­шую, чем у несущих стен). В ре­зультате, основание под самонесу­щей стеной испытывает намного меньшее давление р, а значит, де­формируется (оседает) меньше, чем под несущей (рис. 13). Поскольку обе стены перевязаны, самонесущая стена препятствует свободной осад­ке несущей. Отсюда и "зависание" несущих стен и вызванные им тре­щины, которые образуются преиму­щественно в нижней части зданий. Возникает именно тот случай, ког­да можно "испортить кашу маслом", т.е. когда чрезмерный запас идет во вред. Подобное явление может происходить при наличии не только ленточных, но и свайных фундамен­тов с ленточными ростверками, если не учтены разные нагрузки от стен.

Отметим, что упомянутые трещи­ны не только разрушают отделку и доставляют неудобства владельцам и обитателям домов, они представ­ляют и немалую опасность для не­сущей способности, поскольку, раз­рывая кладку в ответственных узлах, лишают стены горизонтальных свя­зей между собой, уменьшают ус­тойчивость стен и снижают общую пространственную жесткость зданий. Практикой обследования отмечено немало случаев аварийного состо­яния подобных зданий, которые по­требовали дорогостоящего усиле­ния.

Что нужно учитывать при проектировании каменных перемычек? - student2.ru Что нужно учитывать при проектировании каменных перемычек? - student2.ru

2.7. Что может послужить при­чинами обрушения стропильных

конструкций, опирающихся на пи­лястры стен?

Как показывает опыт обследова­ния, причин может быть несколько — каждая по отдельности или в со­вокупности друг с другом. Одна — недостаточная глубина (площадь) опирания (подробнее см. главу 4). Другая — морозное разрушение верхней части кладки стен при сис­тематическом замачивании крышной водой. Третья — депланация се­чений, которую рассмотрим подроб­нее.

В нормативно-справочной лите­ратуре рекомендуется распредели­тельные плиты (подушки) под опора­ми стропильных конструкций (балок, ферм), а также подкрановых балок заводить в основную стену не ме­нее чем на 120 мм, а кладку под подушками на высоту 1 м армиро­вать сетками (С1 на рис. 14). Одна­ко при таком решении опорное дав­ление не распределяется на участ­ки стены, примыкающие к пилястре с боков. На этих участках напряже­ния близки нулю, в то время как напряжения в кладке пилястр под подушками имеют максимальное значение. В результате горизонталь­ное сечение кладки искривляется (происходит депланация), и по гра­нице пилястры со стеной образуют­ся вертикальные трещины, начина­ющиеся сверху. Они отделяют пи­лястру от стены и превращают ее на значительном протяжении в от­дельно стоящий столб (рис. 14, а). Такой столб испытывает более вы­сокие (чем по расчету) напряжения и обладает существенно большей гибкостью. Поэтому целесообразно предусматривать в проектах такое армирование верхней части пилястр, которое захватывало бы и примыка­ющие с боков участки стен (сетки С2 на рис. 14, б), а при больших значениях опорных давлений исполь­зовать наряду с подушками и желе­зобетонные пояса.

Что нужно учитывать при проектировании каменных перемычек? - student2.ru

2.8. В каких случаях возника­ют вертикальные трещины в се­редине длины подоконной части кладки?

Чаще всего возникают на пер­вом этаже бесподвальных зданий на ленточных фундаментах с широки­ми оконными проемами и узкими несущими простенками. В таких зда­ниях подоконная часть стены рабо­тает подобно многопролетной не­разрезной балке, нагрузкой на ко­торую является реактивное давле­ние грунта р под подошвой фунда­мента, а опорами — простенки (рис. 15). В середине пролетов этой бал­ки (т. е. посередине оконных про­емов) возникают значительные из­гибающие моменты. Растягивая вер­хнюю часть кладки, они вызывают трещины, о которых забывают проектировщики и которые легко сдер­жать с помощью горизонтальной ар­матуры.

При наличии современных вычис­лительных комплексов, в основе ко­торых лежит метод конечных элемен­тов, проверить напряженное состо­яние подобных стен труда не со­ставляет. Следует лишь вовремя использовать эти комплексы. Если такой возможности нет, то можно ограничиться простейшим расчетом неразрезной многопролетной бал­ки, включив в ее сечение подокон­ную часть стены и ленточный фун­дамент. Подобный расчет дает не­которую погрешность, которая пой­дет, однако, в запас прочности.

Что нужно учитывать при проектировании каменных перемычек? - student2.ru

2.9. В каких случаях возника­ют температурные трещины в стенах?

В общем случае трещины воз­никают тогда, когда существует пре­пятствие свободным деформациям укорочения при падении темпера­туры воздуха. Таким препятствием обычно являются подземные конструкции (фундаменты и стены подва­ла), сезонный перепад температуры которых намного меньше, чем пе­репад температуры надземных стен. В этом случае в надземных стенах возникают большие растягивающие напряжения, которые и приводят к образованию трещин в ослаблен­ных сечениях — в местах располо­жения проемов, слабой перевязки швов, плохого заполнения верти­кальных швов и т. п. Причем, чем ближе к подземным конструкциям, тем выше напряжения, поэтому тре­щины начинаются обычно с нижних этажей.

В отапливаемых зданиях темпе­ратурные трещины, как правило, являются поверхностными и опасно­сти для несущей способности не представляют. Если же они стано­вятся сквозными, то главную причи­ну нужно искать не в температур­ных деформациях, а в депланации сечений (см. вопрос 2.5). Куда чаще температурные трещины образуют­ся в "долгостроях" — в домах, про­стоявших одну или несколько зим без отопления.

Более опасные трещины, с ши­риной раскрытия до нескольких сан­тиметров, образуются в протяжен­ных зданиях при отсутствии в них деформационных швов. Трещины рассекают продольные стены по наиболее слабым сечениям — в ме­стах расположения внутренних про­ездов и оконных проемов (рис. 16). Они ослабляют кладку под опора­ми балок, плит и перемычек и спо­собны привести к обрушению этих конструкций. Лечение подобных тре­щин обычными методами — зачеканкой или инъецированием — прак­тически бесполезно (трещины "ды­шат" при изменении температуры наружного воздуха), а меры по за­щите помещений от проникающего холода весьма дорогостоящи, не го­воря уже о мерах по усилению стен. Как ни редок подобный брак, но в практике строительства он, увы, встречается.

Некоторым особняком стоят пол­номонолитные бескаркасные дома, в стенах которых температурные трещины возникают в результате внутренних напряжений (особенно больших в зимнее время), вызванных термообработкой монолитного бетона. Такие трещины практичес­ки не влияют на прочность конст­рукций и жесткость здания, однако они нарушают герметичность наруж­ных стен. С этой точки зрения бо­лее целесообразно наружные сте­ны в монолитных зданиях выполнять навесными или самонесущими на гибких связях.

Что нужно учитывать при проектировании каменных перемычек? - student2.ru

2.10. Что может послужить причиной образования горизонтальных трещин в наружных сте­нах?

Причиной чаще всего служит не­правильная установка балконных плит вблизи вертикальных штраб (де­формационных швов). Если балкон­ные плиты пересекают штрабу (рис. 17, а), то они препятствуют свобод­ной осадке следующей секции (бло­ку) здания, т. е. препятствуют вза­имному смещению смежных секций. Тогда наружные стены секции, воз­водимой позднее, «зависают» на выступающих участках балконных плит и происходит отрыв кладки по горизонтальным швам (рис. 17, б).

А поскольку наибольшая суммар­ная разность деформаций накап­ливается вверху здания, то и тре­щины образуются обычно на верх­них этажах.

Что нужно учитывать при проектировании каменных перемычек? - student2.ru

2.11. Для чего в стенах устра­ивают армокаменные или железобетонные пояса?

Наши рекомендации