Свойства функции распределения

1. Функция распределения Свойства функции распределения - student2.ru , что следует из определения функции распределения, как вероятности события Свойства функции распределения - student2.ru , а вероятность любого события Свойства функции распределения - student2.ru .

2. Функция распределения неубывающая функция своего аргумента, т.е. если Свойства функции распределения - student2.ru , то Свойства функции распределения - student2.ru .

3. Вероятность попадания СВ в промежуток Свойства функции распределения - student2.ru равна приращению функции распределения на этом интервале

Свойства функции распределения - student2.ru .

4. Если возможные значения СВ принадлежат интервалу Свойства функции распределения - student2.ru , то

1) Свойства функции распределения - student2.ru при Свойства функции распределения - student2.ru , 2) Свойства функции распределения - student2.ru при Свойства функции распределения - student2.ru .

5. Если возможные значения НСВ расположены на всей оси Ох, то

Свойства функции распределения - student2.ru , Свойства функции распределения - student2.ru .

6. Функция Свойства функции распределения - student2.ru непрерывна слева, т.е. Свойства функции распределения - student2.ru . Для непрерывной СВ функция распределения непрерывна всюду.

Замечание. Так как вероятность каждого отдельного значения НСВ равна нулю, то для НСВ справедливы равенства

Свойства функции распределения - student2.ru .

Плотностью распределения (или плотностью вероятности, или плотностью) НСВ Х в точке х называется производная ее функции распределения в этой точке:

Свойства функции распределения - student2.ru .

График плотности распределения называется кривой распределения. Плотность распределения существует только для НСВ.

Плотность распределения называют дифференциальной функцией распределения или дифференциальным законом распределения.

Свойства плотности распределения

1. Плотность распределения – неотрицательная функция, т.е. Свойства функции распределения - student2.ru .

2. Вероятность попадания СВ с плотностью распределения Свойства функции распределения - student2.ru в данный интервал Свойства функции распределения - student2.ru выражается формулой:

Свойства функции распределения - student2.ru .

3. Функция распределения выражается через плотность распределения формулой:

Свойства функции распределения - student2.ru .

4. Интеграл в бесконечных пределах от плотности распределения равен единице (свойство нормированности):

Свойства функции распределения - student2.ru .

Замечание. Если функция Свойства функции распределения - student2.ru не удовлетворяет свойству 4, то она не может быть плотностью распределения какой-либо случайной величины.

Числовые характеристики НСВ

Математическое ожидание для НСВ, все значения которой принадлежат отрезку Свойства функции распределения - student2.ru определяется формулой:

Свойства функции распределения - student2.ru .

Если все значения непрерывной случайной величины принадлежат промежутку Свойства функции распределения - student2.ru , то математическое ожидание определяется формулой:

Свойства функции распределения - student2.ru ,

если несобственный интеграл сходится абсолютно

Дисперсия НСВ, все значения которой принадлежат отрезку Свойства функции распределения - student2.ru , определяется формулой

Свойства функции распределения - student2.ru .

Если непрерывная случайная величина принимает значения, принадлежащие промежутку Свойства функции распределения - student2.ru , то ее дисперсия определяется формулой

Свойства функции распределения - student2.ru ,

если несобственный интеграл сходится абсолютно.

Среднее квадратическое отклонение случайной величины находится по формуле

Свойства функции распределения - student2.ru .

Пример

Плотность распределения непрерывной случайной величины Х имеет вид

Свойства функции распределения - student2.ru .

Найти: параметр А, функцию распределения Свойства функции распределения - student2.ru , вероятность попадания случайной величины Х в интервал Свойства функции распределения - student2.ru , математическое ожидание Свойства функции распределения - student2.ru и дисперсию Свойства функции распределения - student2.ru .

Решение

Для определения значения А воспользуемся условием Свойства функции распределения - student2.ru . Вычислим интеграл

Свойства функции распределения - student2.ru ,

плотность распределения случайной величины Х примет вид

Свойства функции распределения - student2.ru

Для того, чтобы найти функцию распределения Свойства функции распределения - student2.ru , воспользуемся формулой Свойства функции распределения - student2.ru .

При Свойства функции распределения - student2.ru получаем Свойства функции распределения - student2.ru ,

при Свойства функции распределения - student2.ru находим Свойства функции распределения - student2.ru

Свойства функции распределения - student2.ru ,

при Свойства функции распределения - student2.ru : Свойства функции распределения - student2.ru .

Таким образом, искомая функция распределения имеет вид

Свойства функции распределения - student2.ru

Вероятность попадания СВ Х в интервал Свойства функции распределения - student2.ru найдем по формуле Свойства функции распределения - student2.ru , она будет равна

Свойства функции распределения - student2.ru .

Математическое ожидание находим по формуле Свойства функции распределения - student2.ru :

Свойства функции распределения - student2.ru .

Дисперсию найдем по формуле Свойства функции распределения - student2.ru :

Свойства функции распределения - student2.ru ,

тогда Свойства функции распределения - student2.ru .

Краткое содержание (программа) курса

Теория вероятностей

Элементы комбинаторики (размещения, сочетания, перестановки). Основные понятия теории вероятностей. Алгебра событий. Аксиомы теории вероятностей. Следствия из аксиом теории вероятностей. Классическое определение вероятности. Геометрическое определение вероятности. Зависимые и независимые события. Условная вероятность. Теорема умножения вероятностей. Теорема сложения вероятностей. Формула полной вероятности. Формулы Байеса. Последовательность независимых испытаний. Формула Бернулли. Следствия из формулы Бернулли. Формула Пуассона.

Понятие случайной величины (СВ) и ее закона распределения. ДСВ и НСВ. Ряд распределения. Многоугольник распределения. Функции распределения, ее свойства. Плотность распределения, ее свойства. Числовые характеристики СВ (математическое ожидание, мода, медиана, дисперсия, СКО). Начальные и центральные моменты СВ. Биномиальное распределение. Распределение Пуассона. Равномерное распределение. Показательное распределение. Нормальный закон распределения и его параметры. Вероятность попадания СВ, подчиненной нормальному закону, на заданный участок. Функция Лапласа. Дискретные и непрерывные системы случайных величин (ССВ). Система 2-х СВ, матрица распределения. Функция распределения двумерной СВ, ее свойства. Числовые характеристики ССВ. Корреляционный момент, коэффициент корреляции, корреляционная матрица. Закон больших чисел. Предельные теоремы.

Приложение 1

Значения функции Лапласа

Свойства функции распределения - student2.ru

х F(х) х F(х) х F(х) х F(х)
0,00 0,0000 0,30 0,2358 0,60 0,4515 0,90 0,6319
0,01 0,0080 0,31 0,2434 0,61 0,4581 0,91 0,6372
0,02 0,0160 0,32 0,2510 0,62 0,4647 0,92 0,6424
0,03 0,0239 0,33 0,2586 0,63 0,4713 0,93 0,6476
0,04 0,0319 0,34 0,2661 0,64 0,4878 0,94 0,6528
0,05 0,0399 0,35 0,2737 0,65 0,4843 0,95 0,6579
0,06 0,0478 0,36 0,2812 0,66 0,4907 0,96 0,6629
0,07 0,0558 0,37 0,2886 0,67 0,4971 0,97 0,6680
0,08 0,0638 0,38 0,2961 0,68 0,5035 0,98 0,6729
0,09 0,0717 0,39 0,3035 0,69 0,5098 0,99 0,6778
0,10 0,0797 0,40 0,3108 0,70 0,5161 1,00 0,6827
0,11 0,0876 0,41 0,3182 0,71 0,5223 1,01 0,6875
0,12 0,0955 0,42 0,3255 0,72 0,5285 1,02 0,6923
0,13 0,1034 0,43 0,3328 0,73 0,5346 1,03 0,6970
0,14 0,1113 0,44 0,3401 0,74 0,5407 1,04 0,7017
0,15 0,1192 0,45 0,3473 0,75 0,5467 1,05 0,7063
0,16 0,1271 0,46 0,3545 0,76 0,5527 1,06 0,7109
0,17 0,1350 0,47 0,3616 0,77 0,5587 1,07 0,7154
0,18 0,1428 0,48 0,3688 0,78 0,5646 1,08 0,7199
0,19 0,1507 0,49 0,3759 0,79 0,5705 1,09 0,7243
0,20 0,1585 0,50 0,3829 0,80 0,5763 1,10 0,7287
0,21 0,1663 0,51 0,3899 0,81 0,5821 1,11 0,7330
0,22 0,1741 0,52 0,3969 0,82 0,5878 1,12 0,7373
0,23 0,1819 0,53 0,4039 0,83 0,5935 1,13 0,7415
0,24 0,1897 0,54 0,4108 0,84 0,5991 1,14 0,7457
0,25 0,1974 0,55 0,4177 0,85 0,6047 1,15 0,7499
0,26 0,2051 0,56 0,4245 0,86 0,6102 1,16 0,7540
0,27 0,2128 0,57 0,4313 0,87 0,6157 1,17 0,7580
0,28 0,2205 0,58 0,4381 0,88 0,6211 1,18 0,7620
0,29 0,2282 0,59 0,4448 0,89 0,6265 1,19 0,7660
х F(х) х F(х) х F(х) х F(х)
1,20 0,7699 1,50 0,8664 1,80 0,9281 2,50 0,9876
1,21 0,7737 1,51 0,8690 1,81 0,9297 2,55 0,9892
1,22 0,7775 1,52 0,8715 1,82 0,9312 2,60 0,9907
1,23 0,7813 1,53 0,8740 1,83 0,9328 2,65 0,9920
1,24 0,7850 1,54 0,8764 1,84 0,9342 2,70 0,9931
1,25 0,7887 1,55 0,8789 1,85 0,9357 2,75 0,9940
1,26 0,7923 1,56 0,8812 1,86 0,9371 2,80 0,9949
1,27 0,7959 1,57 0,8836 1,87 0,9385 2,85 0,9956
1,28 0,7995 1,58 0,8859 1,88 0,9399 2,90 0,9963
1,29 0,8029 1,59 0,8882 1,89 0,9412 2,95 0,9968
1,30 0,8064 1,60 0,8904 1,90 0,9426 3,00 0,9973
1,31 0,8098 1,61 0,8926 1,91 0,9432 3,10 0,9981
1,32 0,8132 1,62 0,8948 1,92 0,9451 3,20 0,9986
1,33 0,8165 1,63 0,8969 1,93 0,9464 3,30 0,9990
1,34 0,8198 1,64 0,8990 1,94 0,9476 3,40 0,9993
1,35 0,8230 1,65 0,9011 1,95 0,9488 3,50 0,9995
1,36 0,8262 1,66 0,9031 1,96 0,9500 3,60 0,9997
1,37 0,8293 1,67 0,9051 1,97 0,9512 3,70 0,9998
1,38 0,8324 1,68 0,9070 1,98 0,9523 3,80 0,9999
1,39 0,8355 1,69 0,9090 1,99 0,9534 3,90 0,9999
1,40 0,8385 1,70 0,9109 2,00 0,9545 4,00 0,9999
1,41 0,8415 1,71 2,05 0,9596 4,42 1-10-5
1,42 0,8444 1,72 0,9146 2,10 0,9643 4,89 1-10-6
1,43 0,8473 1,73 0,9164 2,15 0,9684 5,33 1-10-7
1,44 0,8501 1,74 0,9181 2,20 0,9722    
1,45 0,8529 1,75 0,9199 2,25 0,9756    
1,46 0,8557 1,76 0,9216 2,30 0,9786    
1,47 0,8584 1,77 0,9233 2,35 0,9812    
1,48 0,8611 1,78 0,9249 2,40 0,9836    
1,49 0,8638 1,79 0,9265 2,45 0,9857    

Приложение 2

Таблица значений c2 в зависимости от r=n-1 и p.

р
n-1 0,99 0,98 0,95 0,90 0,80 0,70 0,50 0,30 0,20 0,10 0,05 0,02 0,01 0,001
0,000 0,001 0,004 0,016 0,064 0,148 0,455 1,074 1,642 2,71 3,84 5,41 6,64 10,83
0,020 0,040 0,103 0,211 0,446 0,713 1,386 2,41 3,22 4,60 5,99 7,82 9,21 13,82
0,115 0,185 0,352 0,584 1,005 1,424 2,37 3,66 4,64 6,25 7,82 9,34 11,84 16,27
0,297 0,429 0,711 1,064 1,649 2,20 3,36 4,88 5,99 7,78 9,49 11,67 13,28 18,46
0,554 0,752 1,145 1,610 2,34 3,00 4,35 6,06 7,29 9,24 11,07 13,39 15,09 20,5
0,872 1,134 1,635 2,20 3,07 3,93 5,35 7,23 8,56 10,64 12,59 15,03 16,81 22,5
1,239 1,564 2,17 2,83 3,82 4,67 6,35 8,38 9,80 12,02 14,07 16,62 18,48 24,3
1,646 2,03 2,73 3,49 4,59 5,53 7,34 9,52 11,03 13,36 15,51 18,17 20,1 26,1
2,09 2,53 3,32 4,17 5,38 6,39 8,34 10,66 12,24 14,68 16,92 19,68 21,7 27,9
2,56 3,06 3,94 4,86 6,18 7,27 9,34 11,78 13,44 15,99 18,31 21,2 23,2 29,6
3,05 3,61 4,58 5,58 6,99 8,15 10,34 12,90 14,63 17,28 19,68 22,6 24,7 31,3
3,57 4,18 5,23 6,30 7,81 9,03 11,34 14,01 15,81 18,55 21,0 24,1 26,2 32,9
4,11 4,76 5,89 7,04 8,63 9,93 12,34 15,12 16,98 19,81 22,4 25,5 27,7 34,6
4,66 5,37 6,57 7,79 9,47 10,82 13,34 16,22 18,15 21,1 23,7 26,9 29,1 36,1
5,23 5,98 7,26 8,55 10,31 11,72 14,34 17,32 19,31 22,3 25,0 28,3 30,6 37,7
5,81 6,61 7,96 9,31 11,15 12,62 15,34 18,42 20,5 23,5 26,3 29,6 32,0 39,3
6,41 7,26 8,67 10,08 12,00 13,53 16,34 19,51 21,6 24,8 27,6 31,0 33,4 40,8
7,02 7,91 9,39 10,86 12,86 14,44 17,34 20,6 22,8 26,0 28,9 32,3 34,8 42,3
7,63 8,57 10,11 11,65 13,72 15,35 18,34 21,7 23,9 27,2 30,1 33,7 36,7 43,8
8,26 9,24 10,85 12,44 14,58 16,27 19,34 22,8 25,0 28,4 31,4 35,0 37,6 45,3
8,90 9,92 11,59 13,24 15,44 17,18 20,3 23,9 26,2 29,6 32,7 36,3 38,9 46,8
9,54 10,60 12,34 14,04 16,31 18,10 21,3 24,9 27,3 30,8 33,9 37,7 40,3 48,3
10,20 11,29 13,09 14,85 17,19 19,02 22,3 26,0 28,4 32,0 35,2 39,0 41,6 49,7
10,86 11,99 13,85 15,66 18,06 19,94 23,3 27,1 29,6 33,2 36,4 40,3 43,0 51,2
11,52 12,70 14,61 16,47 18,94 20,9 24,3 28,2 30,7 34,4 37,7 41,7 44,3 52,6
12,20 13,41 15,38 17,29 19,82 21,8 25,3 29,2 31,8 35,6 38,9 42,9 45,6 54,1
12,88 14,12 16,15 18,11 20,7 22,7 26,3 30,3 32,9 36,7 40,1 44,1 47,0 55,5
13,56 14,85 16,93 18,94 21,6 23,6 27,3 31,4 34,0 37,9 41,3 45,4 48,3 56,9
14,26 15,57 17,71 19,77 22,5 24,6 28,3 32,5 35,1 39,1 42,6 46,7 49,6 58,3
14,95 16,31 18,49 20,6 23,4 25,5 29,3 33,5 36,2 40,3 43,8 48,0 50,9 59,7
                               

Наши рекомендации