Средняя ошибка выборки
Выборочное наблюдение
Понятие выборочного наблюдения
Выборочный метод используется, когда применение сплошного наблюдения физически невозможно из-за огромного массива данных или экономически нецелесообразно. Физическая невозможность имеет место, например, при изучении пассажиропотоков, рыночных цен, семейных бюджетов. Экономическая нецелесообразность имеет место при оценке качества товаров, связанной с их уничтожением. Например, дегустация, испытание кирпичей на прочность и т.п. Выборочное наблюдение используется также для проверки результатов сплошного.
Статистические единицы, отобранные для наблюдения, составляют выборочную совокупность или выборку, а весьих массив - генеральную совокупность (ГС). При этом число единиц в выборке обозначают п, во всей ГС – N. Отношение n/N называется относительный размер или доля выборки.
Качество результатов выборочного наблюдения зависит от репрезентативности выборки, т.е. от того, насколько она представительна в ГС. Для обеспечения репрезентативности выборки необходимо соблюдать принцип случайности отбора единиц, который предполагает, что на включение единицы ГС в выборку не может повлиять какой-либо иной фактор кроме случая..
Способы формирования выборки
1. Собственно случайный отбор: все единицы ГС нумеруются, а выпавшие в результате жеребьевки номера соответствуют единицам, попавшим в выборку, причем число номеров равно запланированному объему выборки. На практике вместо жеребьевки используют генераторы случайных чисел. Данный способ отбора может быть повторным (когда каждая единица, отобранная в выборку, после проведения наблюдения возвращается в ГС и может быть вновь подвергнута обследованию) и бесповторным (когда обследованные единицы в ГС не возвращаются и не могут быть обследованы повторно). При повторном отборе вероятность попадания в выборку для каждой единицы ГС остается неизменной, а при бесповторном отборе она меняется (увеличивается), но для оставшихся в ГС после отбора из нее нескольких единиц, вероятность попадания в выборку одинакова.
2. Механический отбор: отбираются единицы генеральной совокупности с постоянным шагом N/п. Так, если она генеральная совокупность содержит 100 тыс.ед., а требуется выбрать 1 тыс.ед., то в выборку попадет каждая сотая единица.
3. Стратифицированный (расслоенным) отбор осуществляется из неоднородной генеральной совокупности, когда ее предварительно разбивают на однородные группы, после чего производят отбор единиц из каждой группы в выборочную совокупность случайный или механическим способом пропорционально их численности в генеральной совокупности.
4. Серийный (гнездовой)отбор: случайным или механическим способом выбирают не отдельные единицы, а определенные серии (гнезда), внутри которых производится сплошное наблюдение.
Средняя ошибка выборки
После завершения отбора необходимого числа единиц в выборку и регистрации предусмотренных программой наблюдения изучаемых признаков этих единиц, переходят к расчету обобщающих показателей. К ним относят среднюю величину изучаемого признака и долю единиц, обладающих каким-либо значением этого признака. Однако, если ГС произвести несколько выборок, определив при этом их обобщающие характеристики, то можно установить, что их значения будут различными, кроме того, они будут отличаться и от реального их значения в ГС, если такое определить с помощью сплошного наблюдения. Другими словами, обобщающие характеристики, рассчитанные по данным выборки, будут отличаться от их реальных значений в ГС, поэтому введем следующие условные обозначения (табл. 8).
Таблица 8. Условные обозначения
Показатель | Совокупность | |
генеральная | выборочная | |
Число единиц совокупности | N | n |
Среднее значение | ||
Доля единиц, обладающих каким-либо значением признака | d | |
Доля единиц, не обладающих каким-либо значением признака | 1-d | 1- |
Дисперсия |
Разность между значением обобщающих характеристик выборочной и генеральной совокупностей называется ошибкой выборки, которая подразделяется на ошибку регистрации и ошибку репрезентативности. Первая возникает из-за неправильных или неточных сведений по причинам непонимания существа вопроса, невнимательности регистратора при заполнении анкет, формуляров и т.п. Она достаточно легко обнаруживается и устраняется. Вторая возникает из-за несоблюдения принципа случайности отбора единиц в выборку. Ее сложнее обнаружить и устранить, она гораздо больше первой и потому ее измерение является основной задачей выборочного наблюдения.
Для измерения ошибки выборки определяется ее средняя ошибка по формуле (39) для повторного отбора и по формуле (40) – для бесповторного:
= ;(39) = . (40)
Из формул (39) и (40) видно, что средняя ошибка меньше у бесповторной выборки, что и обусловливает ее более широкое применение.